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ABSTRACT 

The present status of Quantum Chromodynamics formalism for inclusive 

deep-inelastic scattering is reviewed. Leading order and higher order asymptotic 

freedom corrections are discussed in detail. Both the formal language of operator 

product expansion and renormalization group, and the intuitive parton model 

picture are used. Systematic comparison of asymptotic freedom predictions with 

deep-inelastic data is presented. Extensions of asymptotic freedom ideas to other 

processes such as massive u -pair production, semi-inclusive deep-inelastic scat- 

tering, e’e- annihilation and photon-photon scattering are briefly discussed. The 

importance of higher order corrections is emphasized. 
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I. INTRODUCTION 
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A. Preliminary Remarks 

Quantum Chromodynamics (QCD) is the most promising candidate for a 

theory of strong interactions. It has the property of asymptotic freedom which 

seems to be consistent with the deep inelastic data, and it provides a possibility of 

confining quarks and gluons. The quark and gluon confinement in QCD has not yet 

been proven. On the other hand, the theoretical structure of asymptotic freedom 

in deep inelastic scattering, in the leading order and in the next to the leading 

order in the effective strong interaction quark-gluon coupiing constant, seems to be 

well understood by now. Also a great effort has been made in comparing 

asymptotic freedom predictions with the experimental data. We think it is an 

appropriate time to review the present situation. 

The progress in understanding the structure of asymptotic freedom in deep- 

inelastic scattering proceeded in several steps during the last six years. Just after 

the discovery of asymptotic freedom (Gross and Wilczek, 1973a, b; Politzer, 1973),F’ 

all calculations relevant for the leading behavior of the moments of the deep- 

inelastic structure function were performed (Georgi and Politzer, 1974; Gross and 

Wilczek, 1974; Bailin, Love and Nanopoulos, 1974). Three years later these results 

were put in a form useful for phenomenological applications (de Rujula, Georgi and 

Politzer, 1974; Altarelli, Parisi and Petronzio, 1976; Glcck and Reya, 1977a,b; 

Buras 1977; Buras and Gaemers, 1978; Hinchliffe and Llewellyn-Smith, 1977a; 

Altarelli and Parisi, 1977; Tung, 1975, 1978; Fox, 1977)!%ntil recently almost all 

asymptotic freedom phenomenology has been based on the leading order formulae. 

During the last two years, the structure of the higher order asymptotic freedom 

corrections to deep-inelastic scattering has been finally understood and completed 

(Zee, Wilczek and Treiman, 1974; Caswell, 1974; Jones, 1974; Floratos, Ross and 
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Sachrajda, 1977, 1979; Bardeen, Buras, Duke and Muta, 1978; Altarelli, Ellis, 

Martinelli, 1978) and some phenomenological applicarions of these higher order 

results have been made. 

Parallel 10 the development in deep-inelastic scattering there has been a lot 

of progress in the extension of asymptotic freedom ideas to other than deep- 

inelastic processes and it is appropriate to present in this review some of the 

results of these studies. 

B. Outline 

The main purpose of this review is to present 

(i) the leading order of asymptotic freedom and its phenomenological 

implications together with comparison with deep-inelastic data, 

(ii) the structure of higher order asymptotic freedom corrections and their 

effect on leading order results. 

We shall also briefly discuss 

(iii) leading order and higher order asymptotic freedom corrections to other 

than deep-inelastic processes. 

This review is organized in a rather unconventional way, which we shall try 

to justify below. Section II will be what one could call a handbook of parton model 

and asymptotic freedom formulae relevant for deep-inelastic scattering. We begin 

this Section by recalling basic ideas behind the simple Parton Model with Bjorken 

scaling and we quote some of its well-known formulae which will be useful in the 

subsequent sections. We then present systematically all asymptotic freedom 

expressions (leading and next to the leading order) necessary for the study of the 

scaling violations in deep-inelastic scattering. This section ends with a general 

structure of present day asymptotic freedom phenomenology in the form of a 

procedure. This hopefully will enable anybody to make her (his) own QCD fit to 

deep-inelastic data. One might think that it is a bad idea to begin a review with a 
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vast array of formulae. In the standard reviews, one usually relegates them to an 

appendix or to the last section of the text. We think, however, that such an 

exposition of the formulae and of the general structure of asymptotic freedom at 

the beginning will give the reader a good feeling about the whole subject and 

hopefully will enable her (him) to begin her (his) own research in this field without 

reading too much. 

The derivations, discussions, explanations and intuitive interpretations of the 

formulae of Section II are contained in the main part of the review, namely in 

Sections III to VIII. Section III deals with QCD as the field theory of colored quarks 

and gluons. The basic tools necessary to study QCD implications for deep-inelastic 

scattering are systematically presented here. After recalling the Feynman rules 

for QCD, we discuss briefly the concepts of regularization and renormalization. In 

particular we illustrate with examples dimensional regularization (‘t Hooft and 

Veltman, 1972) and the minimal subtraction scheme (‘t Hooft, 1973). Subsequently 

we discuss renormalization group equations in general. Next we present the 

operator product expansion and its relation to the moments of deep-inelastic 

structure functions. Finally we derive renormalization group equations for the 

Wilson coefficient functions and show with examples how to calculate anomalous 

dimensions. This Section may be omitted by experts and pedestrian readers, 

without loss of continuity. 

In Section IV we present the formal approach to deep-inelastic scattering 

based on the operator product expansion and renormalization group. We deal here 

explicitly with the mixing of gluon and singlet fermion operators. The main result 

of this section is an expression for the moments of an arbitrary structure function 

in terms of the Wilson coefficient functions with an explicit Q2 dependence 

calculated in the leading order. 
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In Section V we turn to a more intuitive approach to asymptotic freedom 

which, on the one hand, is a simple extension of parton model ideas and, on the 

other hand, is equivalent to the formal approach developed in Section IV. The main 

results of this section are the equations for the Q2 dependence of effective parton 

distributions. We discuss various properties of these equations and give their 

approximate analytic solutions. 

In Section VI we list various implications of asymptotic freedom for deep- 

ineiastic processes. Subsequently, we confront these predictions with the recent 

high energy ep, pp, vN and TN data. 

In Section VII we discuss asymptotic freedom beyond the leading order. This 

section is rather formal, We discuss first the non-singlet case because it is simpler 

than the singlet one. The renormalization dependence and independence of various 

quantities is dealt with in some detail. Also a discussion of the meaning of the 

parameter A, the sole scale parameter of the theory (except for masses), is given. 

Corrections to various parton model sum rules and relations are presented. After a 

phenomenological application of non-singlet formulae we turn in Section VIII to the 

singlet case which we present in detail. We discuss some phenomenological 

implications of the singlet formulae for deep-inelastic data. We also present 

parton model formulae for these higher order corrections. We end Section VIII by 

discussing longitudinal structure functions. 

In Section IX we discuss briefly the extension of asymptotic freedom ideas to 

other processes such as massive u-pair production, semi-inclusive deep-inelastic 

scattering, e+e- annihilation and photon-photon scattering. 

Finally in Section X we make a few concluding remarks. The paper ends with 

two Appendices where the basic formulae of the dimensional regularization and the 

relations between parton distributions and the matrix elements of local operators 

are given. 
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In the last six years there have been many very good reviews on asymptotic 

freedom (e.g. Politzer, 1974; Gross, 1976; Ellis, 1976; Gaillard, 1977; Altarelli, 

1978a;Nachtmann, 1977; LIewell yn-Smith, 1978a, Ross, 1979 f3 The new topic 

discussed here, which has not been presented in the reviews above (except for some 

discussion in the review by Ross), are the higher order corrections (Sections VII, 

VIII). We have also attempted to present the whole material in a form easy for 

phenomenological applications. While completing this review we received a very 

nice review article by (Peterman, 1979) who also discusses, among other topics, 

higher order asymptotic freedom corrections in some detail. Although unavoidably 

there is some overlap between Peterman’s and our review, the structure and 

presentation of both reviews is quite different. 
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II. PART-ON MODEL AND ASYMPTOTIC FREEDOM FORMULAE 

A. Preliminaries 

1. Deep- inelastic structure fUnCtiOnS 

It is well recognized by now that deep-inelastic processes, as depicted in Fig. 

1, are excellent means to study the inner structure of hadrons. The basic quantities 

used to discuss these processes are the structure functions W 2, W3 and WL which 

for spin-averaged processes F4 are defined by the following equation 

W 
PV 

= I d4z eiqaz ‘P I [ Jp’Z)~ Jv to)] 1 P’spin averaged 

= e 
vWL(v, Q2) 

+d 
uW2b, 4’) 

pv 2x pv 2x 

- ie %%3 
pm3 v vW3b, 4') (2.1) 

where J 
P stands either for the electromagnetic current (ep, pp scattering) or a 

weak current (v, u scattering). For electromagnetic processes W3 = 0. The tensors 

e 
lJV 

and d 
PV 

are defined as follows 

e q,qV 

PV = gpv- q2 

and 

d plpvq2+ ppqv + pvq p 
j.lv=- v2 V -gpv l 

(2.2) 

(2.3) 
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Kinematical variables are defined in Fig. 1. For the purpose of subsequent 

sections, we prefer to deal with the longitudinal structure function VW L rather 

than with WI. vWL and WI are related to each other as follows 

VWL = VW2 -2xw1 . (2.4) 

The dependence of the structure functions on the variables I, and Q2 is dictated by 

the underlying theory of strong interactions. The main object of this review is to 

study WL, W2 and W3 in the framework of Asymptotically Free Gauge Theories 

(Politzer, 1973, 1974; G ross and Wilczek, 1973a, b)F5First, however, let us recall 

how the structure functions in question behave in a simple parton model. 

2. Bjorken scaling and its intuitive interpretation 

As we indicated in Eq. (2.11, the structure functions depend generally on both 

v and Q2. However, if v and Q2 are sufficiently large so that all mass scales can 

be neglected, the dimensionless structure functions vW2, vW3, Wl and v WL will 

depend only on 

x=g 
i.e., we shall have Bjorken scaling (Bjorken, 1969 ) 

(2.5) 

(2.6) 

(2.7) Wi; + F;(x) 
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Here i stands for a process considered i = UN, YN, ep, up, etc. The simple parton 

model was introduced by (Feynman, 1969) as an intuitive picture of Bjorken scaling 

wherein 

i) target mass effects 

ii) quark mass effects 

iii) interactions between quarks (partons) 

iv) <p12 > of partons and other possible scales 

are neglected. This beautiful model is so well known to experimentalists and 

theorists that there is no need to describe it here in detail. A few comments and a 

collection of the most important parton model formulae are, however, necessary. 

In the parton model one imagines that a photon, W-boson or 2’ scatters off a 

free, pointlike constituent-parton (qi) as shown in Fig. 2a. The corresponding 

virtual Compton amplitude is presented in Fig. 2b. In this picture, x is the fraction 

of the proton momentum carried by the parton qi. On a more quantitative level 

(Bjorken and Paschos, 1969, 1970; Kuti and Weisskopf, 1971; Feynman, 1972) one 

introduces parton distributions (quark, antiquark) qi(x) and ti(x) which measure the 

probability for finding a parton of type i in a proton with the momentum fraction x, 

Then for instance 

F;p(x) = 1 e; X [qi(x) + ii(‘) I 
i 

(2.8) 

.th where ei stands for the charge aof the 1 parton. 

Similarly all deep-inelastic structure functions and various relevant cross- 

sections can be expressed in terms of parton distributions weighted by the 

appropriate electromagnetic or “weak” charges. In the following we shall recall the 

rules for construction of these parton model formulae and subsequently list the 

most important expressions. 
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8. Basic Formulae of the Parton Model 

1. Parton distributions 

In a four quark model (u, d, s, c) (Glashow, Iliopoulos and Maiani, 1970) we 

decompose the proton into valence part 

V(x) = u,(x) + d$) 9 (2.9) 

the non-charmed sea 

S(x) z u,(x) + ds (x) + c(x) + a(x) + s(x) + x(x) 9 (2.10) 

the charmed sea 

C(x) G c(x) + 3x1 9 (2.11) 

and we introduce a gluon distribution G(x). The u(x) and d(x) distributions are then 

given as foliows 

u(x) = uv(x) + us(x) (2.12) 

and 

d(x) = dv(x) + d,(x) l (2.13) 
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In what follows it will be convenient to denote generally any quark and anti- 

.th quark distribution corresponding to the 1 flavor, by qi(X) and qi(X), respectively, 

and introduce the following combinations 

and 

Notice that 

qtx) = r, qit’) 
I 

(2.14) 

~tx) = C 4itx) 
i 

(2.15) 

c(x) = q(x) + ?j(x) = v(x) + S(x) + C(x) (2.16) 

qjcx) = qi(X) - qj(x) 
. 

(2.17) 

(2.18) 

V(x) = q(x) - q(x) . (2.19) 

The distributions Aij(x), pj(x) and V(x) are non-singlets under flavor symmetry 

SU(4), whereas C(x) and C(x) are singlets. The distinction between non-singlet and 

singlet distributions will be very important when we come to discuss asymptotic 

freedom effects. 
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2. Electromagnetic structure functions 

Taking the standard charge assignment (u,d,s,c) = ($ , - $, - .$, $ ) into 

account one obtains 

Fzp(x) = 6 x C(x) + L x Aep(x) 6 

and 

eN 
F2 (4 = 18 5 x C(x) +; x AeN 

(2.20) 

(2.2 1) 

where N denotes an isoscalar target and the non-singlet distributions Aep(x) and 

AeN are given as follows 

AeN = [ F(x) - ?$c) 1 + [ C(X) - s(x) 1 
9 (2.22) 

Aep(x) = AeN + [ u(x) - d(x)] + [ c(x) - a(x) ] . (2.23) 

3. v and 7 cross-sections 

In order to write similar expressions for the v,v processes one needs a model 

for weak interactions. All the formulae below are for the Weinberg-Salam-GIM 

model (Weinberg, 1967; Salam, 1968; Glashow, Iliopoulos and Maiani, 1970) in which 

the quarks are grouped in left-handed doublets and right-handed singlets 

. (2.24) 
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Here d 
8C 

=dcos eC+ssineC and se = s cos 0 
C 

c - d sin 3 c with 9 c being the 

Cabibbo angle. Generalizations of the formulae below to more flavors of quarks 

are straightforward. 

da We quote first formulae for the differential cross-sections - dxdy on isoscalar 

da targets. Here y = u/E. In the parton model the cross-section - dxdy is written as 

follows 

& = C ( &) 2X[qitX) or<i(x)l 
1 i 

(2.25) 

is the elementary cross-section for scattering of W’ or 2 off a 

If quarks are spin-!4 particles as one usually assumes then in the Weinberg- 

Salam mode1 the explicit formulae for the elementary cross-sections are given (in 

units of G*l as follows 

Q cc 
1 for 

( 1 

‘qi9 Gi 

dxdyi = 
(1 - y12 for ‘Tii, ‘4i 

(2.26.4 

c 6; + $(l- yJ2 for ’ qit~ ),‘sit- $1 

i 

for 

6: + $1 - yj2 
. (2.26b) 

for ‘qit- ~ ), ~~i(~ ) 

$1 - yJ2 + 6; for 

CC and NC stand for the charged current and neutral current Processes resPectivelY- 

The number in the parenthesis denotes the charge of the quark or antiquark. The 

“couplings” 6. have the following dependence on the Weinberg angle 8 w: 1 
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1 cS1 = 7 - $sin2e w 

62 = _ -jj- + f sin2 3 w 

~5~ = - $ sin23 w 

64 = $ sin2 8 w . (2.27) 

Using Eqs. (2.25-2.27) one can construct do - for any process of interest. We dxdy 
quote the formulae for isoscalar targets. In order to simplify discussion, we 

neglect threshold effects due to charm production. We shall include these effects 

later. We then have for charged current processes 

G’ME, 

7T x t [q(x) + s(x) - c(x) ] t (1 - y)‘-[$x1 + 3X”) - S(x) II 
and 

x { [ ;T<x> + ax> - ax> 1 + (1 - yJ2 [q(x) + c(x) - s(x)] 

For neutral current processes we obtain 

= G2ME 
Tr 

+ (c(x) + 3(x)) c cs; + 6; + 6; + tit 1 (1 + (1 - yJ2) + 

Md +3xM6; + 6; I(1 + (1 -yJ2) + (c(x) +Z(x))[$ + @l + (1 - y)2)} 

(2.28) 

. (2.29) 

(2.30) 

and 
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(&) “,, = (&) ;,((I - YJ2 - 1) . (2.31) 

Simple expressions can be obtained for the sums and the differences of the 

cross-sections above. We have for instance 

da 
dxdy { W[l + (1 - Y121 + AeN r-1 + (1 - yJ2 ] 1 (2.32) 

and 

( 1 

v -7 

ais- cc 

2 
= G+ x V(x)[l - (1 -y)21 (2.33) 

where AeN is given by Eq. (2.22). 

4. v and 3 structure functions 

The V and 5 structure functions F~]?‘(x), F;“(x) and Fy 9’ (x) are related to 
do the cross-sections - dxdy as follows 

= + { (1 - y)F;“(x) + xy2F;“(x) k (1 - f )xyF&) ) . (2.34) 

Comparing (2.28)-(2.31) with (2.34) we obtain 

2xF$x) = F;&x) = x C(x) 

and 

xF;‘(x) = XV(X) T x AeN 

(2.35) 

(2.36) 
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for charged currents, and 

and 

2xF;‘v(x) = F;+(x) = Xc(X)[ 6; +6; + 6; + a;] 

xF&) = XV(X) [ 6; + 6; - 6; -6; 1 

(2.37) 

(2.38) 

for neutral currents. 

Notice that FyVv (x) for both neutral current and charged current processes 

behaves as non-singlet whereas F;’ for charged current processes behaves as a 

pure singlet. Fipv for neutral current processes contains similarly to electromag- 

netic structure functions (Eqs. 2.20 and 2.21) both singlet and non-singlet 

contributions. 

5. Basic properties of the simple parton model 

There are many consequences of parton model ideas which have been 

extensively discussed in the literature (e.g. Feynman, 1972; Llewellyn-Smith, 1972; 

Landshoff and Polkinghorne, 1972; Close, 1979). We only mention few of them. 
F6 First there is Bjorken scaling in x for the structure functions and in x and y for the 

da 
dxdy 

cross-sections. This means for instance that < y > and c; /u,~ are energy 

independent and the moments of the structure functions 

dx Xn-2Fi(X) 5 M i(n) 
n = 2,3,... 

0 i = 1,2,3,L (2.39) 

are Q2 independent. 
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Furthermore there exist certain sum rules and relations between structure 

functions which deserve attention. These are in particular: 

i) Adler Sum Rule (Adler, 1966) 

1,l+ [e-F;p] = 2 

ii) Gross-Llewellyn-Smith sum rule (Gross and Llewellyn-Smith, 1969) 

J.oldx[@+F;p] = +6 

iii) Bjorken Sum rule (Bjorken, 1967) 

1 

Jd[ x Fl 
%F;p = 1 

0 1 
and 

iv) Callan-Gross reiation (Callan and Gross, 1969 ) 

F2 = 2xFl 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

or consequently FL = 0. 

We should also remark that the parton model has been extended to other than 

deep-inelastic processes. Famous examples are 

e+e- + m+ anything 

e+e- + hadrons 

pp + u ‘u - + anything (2.44) 
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and large pl processes. 

The building blocks of all parton model formulae for processes listed under 

(2.44) are again quark distributions (and fragmentation functions) which also enter 

the deep-inelastic formulae. Consequently in the parton model there exist many 

relations between various different processes. This fact as well as the simplicity 

and intuitive picture behind the parton model already attracted many physicists ten 

years ago. In spite of the successes of the parton model in the past, this model now 

seems to be too simple to explain the data. In fact although Bjorken scaling is well 

satisfied for 0.15 LX 2 0.25 over the relevant (deep-inelastic) Q2 range explored by 

present experiments (2 2 Q22 100 GeV2), for x c 0.15 and x >0.25 definite Q2 

dependence is seen in the data for ep and u p scattering. Similar scaling violations 

have been observed in high energy v ,J processes. In addition, the ratio R = o L/o T 

as measured in ep scattering is definitely different from zero contrary to equation 

(2.43). AU th ese facts indicate that we have to go beyond the simple parton model 

if we want to understand the data. 

6. Beyond the simple parton model 

Even before the discovery of scaling violations in deep-inelastic scattering 

theorists found a beautiful interacting (Gauge-) Field Theory-Quantum Chromody- 

namics with its property of asymptotic freedom and calculable pattern of scaling 

violations. As we shall see in the course of this review, this theory has not only 

much better theoretical background than the simple parton model but also fits 

better the existing data. In addition in spite of a very heavy mathematical 

machinery the predictions of the theory in question have a very simple intuitive 

interpretation similar to the simple parton model but much richer. 

It is perhaps useful to get a general overview and list how the simple parton 

model properties are modified in asymptotically free gauge theories (ASF). 
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First we write symbolically the ASF predictions for the moments of the 

structure functions as follows 

Ii dx x n-2F(x, Q2) = A,., [ln Q2 1 -dn 
0 

l+ fn - + . . . 
In Q2 

(2.45) 

where An, dn and f, are numbers to be discussed in the subsequent sections. Then 

in the leading order (first term on the r.h.s. of equation Q..45jj, all parton model 

formulae of this section remain unchanged except that now the parton distributions 

depend on both x and Q2. in particular, all sum rules (e.g. 2.40-2.43) are satisfied. 

The Q2 dependence of parton distributions is calculable. 

During this past year it became clear that also parton model relations 

between various processes (deep-inelastic scattering, Drell-Yan process, etc.) also 

remain unchanged in the leading order. 

On the other hand, if next-to-the-leading terms are taken into account (e.g. 

second term in Eq. 2.45), sum rules (e.g. -. 7 41-2.43) are violated. One also expects 

beyond the leading order corrections to the parton model relations connecting 

‘various processes. 

C. Basic Formulae of Asymptotic Freedom 

In this Section we shall collect all asymptotic freedom formulae relevant for 

phenomenological study of deep-inelastic scattering. The derivations, discussions 

and intuitive interpretations of the formulae below, can be found in Sections III to 

VIII. 

1. Leading order 

In the leading order of asymptotic freedom all parton model formulae of 

Section 1I.B remain unchanged except that now parton distributions depend on Q2. 

In Quantum Chromodynamics the Q2 dependence of parton distributions is given by 

certain equations, which we present now. 
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1.1. Effective coupling constant 

Contrary to the simple parton model, which corresponds to a free Field 

Theory, QCD is an interacting field theory. The interactions between quarks and 

gluons can be described by the effective coupling constant i2(Q2) which satisfies 

the following equation 

where 

t=lnQ1 
l.12 

(2.46) 

(2.47) 

and g is the renormalized coupling constant. Furthermore B(g) is a renormalization 

group function and p2 is the subtraction scale at which the theory is renormalized. 

The presence of this scale is at the origin of scaling violations. The notion of B(g) 

and of p2 will be given in Section III. Here it suffices to say that l3(g) can be 

calculated in perturbation theory. We have 

B(g) = - B, 32 - B, _8, + . . . 
16n2 (161~~) 

(2.48) 

The parameters 8, and Bl have been calculated by (Politzer, 1973; Gross and 

Wilczek, 1973a)and (Caswell, 1974; Jones, 1974) respectively. In QCD (SU(3) gauge 

theory) they are given as follows 

8, = 11 -$f (2.49a) 
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and 

B, = 102 -T f . (2.49b) 

Here f is the number of flavors. 

Keeping only the first term on the r.h.s. of equation (2.48) and inserting B(g) 

into Eqs. (2.46) one obtains the leading order formula for i2(Q2): 

g2(Q2) = 16~~ 
2 

so+ 

The scale parameter A is related to 1-1 and g as follows 

A2 = p2 exp 16r2 [ 1 Bog2 

(2.50) 

(2.51) 

A is a free parameter which is to be found by comparing QCD predictions with 

experimental data. It follows from Eq. (2.50) that the effective coupling constant 

decreases with increasing Q2 and vanishes for Q2 = *. This is what we mean by 

asymptotic freedom. 

1.2 Intuitive approach 

In the intuitive approach to asymptotic freedom (Kogut and Susskind, 1974f!o 

be discussed in detail in Section V one imagines that by increasing Q2 of the photon 

or W boson or equivalently by probing the inner structure of the hadron at smaller 

distances one can resolve the quark into a quark and a gluon, gluon into quark- 

antiquark pair and gluon into two gluons. These three basic processes are shown in 

Fig. 3. It follows immediately from this picture that the parton distributions 

depend on Q2. On a more quantitative level (Parisi, 1975; Altarelli and Parisi, 
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1977; Dokshitser, Dyakonov and Troyan, 1978a) one introduces “splitting” functions 

Pij(z) which are the measure of the variation (with Q2) of the probability of finding a 

parton i inside the parton j with the fraction of the parent momentum z = x./x.. Then 
’ 1 

the equations which determine the Q2 dependence of the parton distributions are given 

as follows 

dAi’(X, t) 
dt 

ddx, t) = 
dt % s ‘* b(,, t)Pqq$ ) + 2f G(y, t)PqG(f )] 

x y 

dG(x, t) = 
‘-O dt t* +, t)PGq(; ) + G(y, f)PCG(; )] 2lr xY C 

(2.52) 

(2.53) 

(2.54) 

where C , A ij and t have been defined in Eqs. (2.16), (2.17) and (2.47) respectively. 

Furthermore 

(2.55) 

and ~j(X, t) defined in Eq. (2.18) satisfies Eq. (2.52). 

The functions Pij(z) are explicitly given in QCD (Altarelli and Parisi, 1977; 

Dokhsitser, Dyakonov and Troyan, 1978). They are 

Pqq(z) = ; (& +; 
L 

&(I - z) 
+ 1 

pqG(z) = ; [ z2 + (1 - z)2 1 
(2.56) 

(2.57) 
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4 1 + (1 pGq(z) = 7 z - z)2 (2.58) 

and 

‘GGb) = 6 c (+ + 7 (1 - z, + z(l - z) + (; -A) a(1 -z)j . (2.59) 

The distribution (1 - z);’ is defined by the following equation 

I ' dz & 2 
0 + 

J' ' dz f'z/l-wf$' 
0 

(2.60) 

where f(z) is any function regular at the end points. For z < 1, (1 - z)+ = 1 - z. The 

properties of the splitting function Pii and of the solutions of Eqs. (2.52)-(2.54) 

are discussed in Section V. 

Finally we want to comment on how the integro-differential equations above 

can be used in the phenomenological applications. One assumes or takes from the 

data the distributions Aij(x, Qz), ,X(x, Qz) and G(x, Qi) at a certain value of 

Q2 = Qz. These distributions serve as the boundary conditions for Eqs. (2.52)-(2.54) 

which can be solved numerically. For practical purposes before writing a computer 

program it is useful to get rid of terms (1 - z)L1 by employing the following formula 

II H@ 
= H(x)ln(l - x) + I ’ dz 

X dz Zl-izJ+ x (l-i) ( zH$) - H(x)) (2.61) 

where H(x) is any function regular at the end points. 
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1.3 Formal approach 

In the formal approach to asymptotic freedom (Gross and Wilczek, 1974; 

Georgi and Politzer, 1974) to be discussed in detail in Section IV one uses the 

operator product expansion (Wilson, 1969) for the product of currents which enter 

Eq. (2.1). We write symbolically 

X2)30) = 1 ?(z2)z 0 +- 4-l 
i,n pl”‘Zpn i (2.62) 

F8 where the sum runs over spin n, twist 2 operators such as the fermion non-singlet 
lJ”I”’ b 

operator ONS and the singlet fermion and gluon operators 0 1-I 1”‘un and 

+**I+) 9 

OG ’ respectively. Explicit expressions for these operators are given in 

Section III. w i Cn(z2) are the Wilson coefficient functions. We next define the 

reduced matrix elements, A’ n, of the operators in question as follows 

lJ1...un 
<PlO. I Ip > = A;p, . ..pu 

1 n 

Then we can write (Christ, Hasslacher, Mueller, 1972) 

II dx x”-~F~(x, Q2) = 1 
0 i 

A$r2)C’k n I 

(2.63) 

(2.64) 

(x, Q2) is an arbitrary deep-inelastic structure function (k = 1,2,3,L) and 

are fourier transforms of the coefficient functions in Eq. (2.62). 

Notice that in writing (2.64) we have been more explicit than in Eq. (2.62), 

indicating that the coefficient functions depend on the structure functions 

involved, and that the coefficient functions can be calculated in perturbation 

theory in g. We have also indicated that the reduced matrix elements Ain depend 

on P2. 
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As discussed in Section III there is a set of non-singlet operators corres- 

ponding to various XK in Eq. (3.55). Since these operators neither mix under 

renormalization with each other nor with the singlet operators, the Q2 dependence 

of their coefficient functions is in common. Therefore in this review any linear 

combination of non-singlet operators will be denoted for simplicity by a common 
1-I l...pN 

symbol ONs and the corresponding reduced matrix elements and coefficient 

functions by An NS(u2) and C’;Irn(Q2/u2, g2) respectively. It should however be kept 

in mind that AyS (u 2 ) depend generally on the process and the structure function 

considered. This dependence is discussed in Appendix 8. 

The Q2 dependence of the Wilson coefficient functions is governed by certain 

equations called renormalization group equations which for the coefficient 

functions of non-singlet operators take the following simple form 

(2.65) 

Here uis(g) is the anomalous dimension of the spin n non-singlet operator and B(g) 

has been defined in Eq. (2.46). The renormalization group equations are discussed 

in Sections III and IV. Here it suffices to give the solution of Eq. (2.65) which is 

(2.66) 

The 1 on the r.h.s. of Eq. (2.66) means simply Q2 = v2. 

CF,:(l, g2) and y;,(g) can be calculated in perturbation theory. Up to and in- 

cluding next-to-leading order corrections we have 

k 
’ NS 

1 + i? BNS 
161~~ k9n 

k = 1,2,3 

(2.67) I 
dL NS O+xBNS 

16a2 L’n 
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and 

y Fls (l),n 
+yNS 

g4 

t16r2j2 ’ 

.7-THY 

(2.68) 

where Btyn, ysvn and ytifn are known numbers to be specified below. 6 & are 

constants which depend on weak and electromagnetic charges. Specific examples 

of c$& are given in Appendix B. Perturbative expansion for /3(g) is given in Eq. 

(2.48). 

In the leading order one keeps only the first terms on the r.h.s. of Eqs. (2.48), 

(2.67) and (2.68). Then using (2.64), (2.66) and (2.50) one obtains a general 

expression for the Q2 evolution of the moments of any non-singlet structure 

function Fy 

+S 
k = 1,2,3 

0 
dx x”-‘F;‘(x, Q2) = 

where 

O&n 
d” ‘NS -- 

NS- 2B 0 

k=L (2.69a) 

(2.70) 

and we have put u 2 = Qz. (Oh The parameters yNs have been calculated by (Georgi 

and Politzer, 1974; Gross and WiIczek, 1974) and are given as follows 

$in = 8 3 l- c (2.71) 
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Except for the value of A, the only unknown parameters in Eq. (2.69a) are the 

Ai’( They can be determined from experiment by measuring Fk NS(x, Qt) at an 

arbitrary value of Q2 = Q,. 2 Flf. mce the value of Qz in Eq. (2.69a) is arbitrary, as 

required by the renormalization group equations, it is often convenient to get rid of 

Qz by writing Eq. (2.69a) as follows 

dx x”-~F~~(~, Q2) = 6ks /fS 
-d”NS 

k = 1,2,3 
0 

(2.69bI 

Here ANS n are (independent of Qi) constants which are related to An “‘(Qi) by Eq. 

(4.19). 

For singlet structure functions the situation is more complicated because, as 

discussed in Section III, the operators Or$i, and 02 mix under renormalization. The 

Q2 dependence of the corresponding Wilson coefficient functions Cl n and Ct n is 9 9 
governed by two coupled renormalization group equations 

[ 
P & + B(g)& 

I ( 
c’k n 

2 
Q 9 112 

Here $(g2) are the elements of 

following perturbative expansion 

9g 
2 i,j = $,G . (2.72) 

the anomalous dimension matrix. They have the 

Y;(gZ) (Oh J& = Yji + y(l,,n g4 
16n2 I1 (16~~) 

2 + . . . . (2.73) 

We shall discuss the solution of Eq. (2.72) in Section IV. Here it is sufficient to give 

the generalization of Eqs. (2.69a,b) to any singlet structure function F$x, Q2). In 

the leading order we have 
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k = 1,2 (2.74a) 

c 0 k=L 

where 6 k 
$ 

are constants which depend on weak and electromagnetic charges. 

Specific examples of 6; are given in Appendix B. Lsk 
JI enter the definitions of 

CQ, i2) and of Ct .(l, g2), the coefficient functions of the operators 0; and 
9 

0°C at Q2 = p2, as follows 

k = I,2 

and 

I 
k = 1,2 

C$l, i2, = 

k=L 

(2.75) 

. (2.76) 

Here only the leading and the next-to-leading order terms have been shown. 

Furthermore Af(Qz) are unknown constants which must be taken from experiment 

at one value of Q2 = Qz. They are certain combinations (see Eqs. 5.29 and 5.30) of 

the reduced matrix elements A$Qz) and Ai(Q$ 



-2% FERMILAB-Pub-79/17-THY 

Finally the powers dr’+ are given by 

A” ?c 
d; = 28 

0 
(2.77) 

where “2 are the eigenvalues of the one-loop anomalous dimension matrix: 

Y$)$” + Y$J f /( f&n 
A” 

Y$” - Y GG 
> 

2 + 4y$Okn pin 

+ 
= 2 (2.78) 

The leading order formula (2.74a) is obtained by keeping only the first terms on the 

r.h.s. of Eqs. (2.48, (2.73), (2.75) and (2.76). The Parameters 

calculated by (Georgi and Politzer, 1974; Gross and Wilczek, 1974) 

follows 

y 04 
ij have been 

and are given as 

y$=y$L; l- 
1 

2 1 
Iii +4 

j=2 T f 1 
y;g = - 4f (n2 + n + 2) 

n(n + l)(n + 2) 

16 (n2 + n + 2) 
Yco3 q - 3 n(n2 _ 1) 

y&? = 6 1 4 4 
7-n(n-l)‘(n+l)(n+2) +4 +- if . 

(2.79a) 

(2.79b) 

(2.79~) 

(2.79d) 

It should be remarked that the non-diagonal elements of the anomalous dimension 

matrix, yJpo($ and yGo;“, depend on the normalization of quark and gluon operators 

and only the product y $0;” .y;$ is a physical quantity. In particular the non- 

diagonal elements in the papers by (Georgi and Politzer, 1974) and by (Gross and 

Wilczek, 1974) differ from each other but the product yQokn l y,-$ is the same. 

Eqs. (2.79b, c) are from Gross and Wilczek. 
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In analogy with Eq. (2.69b) we can write Eq. (2.74a) as follows 

‘,Idx x”-~F$x, Q~) = $A; [In d ] 
-d; 

A2 
(2.74b) 

where Ai are (independent of Qz) constants which are related to Ai by Eq. 

(4.43). 

This completes the presentation of the formal approach in the leading order 

of asymptotic freedom. The main formulae are the Eqs. (2.69) and (2.741. They 

describe the Q2 evolution of the non-singlet and singlet structure functions in 

terms of 3 sets of unknown numbers An “(Q$, AE(Qz) (or AtS, AX) and the scale 

parameter A. These unknown numbers and A are to be taken from the data. 

1.4. Marriage of the intuitive and the formal approach 

Let us denote the moments of the parton distributions C(x, Q2), Aij(x, Q~) and 

G(x, Q2) by 

< A ij(Q’)>, 3 s 
1 

0 
dX X"-lA ij(X, Q2) 9 

cC(Q'),, z s 
1 

dx ~“-11 (x, Q2) 3 
0 

<c(Q2bn z s 
1 

dx x”-lG(x, Q2) n 

and introduce the variable 

s” = In 

J 

ln$ 

Q2 
In o 

A2 

(2.80) 

(2.81) 

c 

(2.82) 

(2.83) 
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It can be shown (see Section V for details) by using parton model formulae on the 

1.h.s. of Eqs. (2.69a) and (2.74a) that the formal Eqs. (2.69a) and (2.74a) are 

equivalent to the following equations for the Q2 evolution of the moments of the 

parton distributions (Altareili, Parisi and Petronzio, 1976; Gliick and Reya, 1977a, 

b; Buras, 1977; Hinchliffe and Llewellyn-Smith, 1977a; Novikov et al., 1977) 

<Aij(Q’)>n = <Aij(Q~)>n exp [ - dLsZ ] 9 

<c(Q’)>, = ( (1 -ankC(Qz)>n -TU,CG(Q~)>~} exp E - d”3 1 + 

+ { an <c(Qf$ >n + En <G(Qzb n ) exp i - d”:] 9 

4Q2bn = { anG(Q;) ‘n - E,,<E(Q~) >n} exp [- ciy :I 

+ { (1 - c+J <G(Qzbn + E,<C(Q~) >n} exp [ - d”g 1 

(2.84) 

i2.85) 

(2.86) 

where 

an = 
yg - xy 

A”- A: 

(2.87) 

and d:, n A, and diS are given by Eqs. (2.77), (2.78) and (2.70) respectively. The 

numerical values of d”,, d” NS, an, sn and E n can be found in Tables 1 and 2. Eqs. 

(2.84-2.86) are very simple to use. Once the quark and giuon distributions are fixed 

at Q2 = Qz and <C (Qz) >n, <G(Qt)>, and <Aij(Qz)>n are caIculated according to 

(2.80-2.82), th e r.h.s. of Eqs. (2.84-2.86) are known for Q 2 2 #Q, in terms of the single paramet 
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A. This parameter can be found by fitting the left-hand side of the equations in 

question to the data (see however discussion in Section VII). We shall demonstrate 

in Section V that equations (2.84)-(2.86) are equivalent to the integro-differential 

Eqs. (2.52)-(2.54). 

This completes the presentation of the asymptotic freedom formulae in the 

leading order. 

2. Higher order corrections 

In the literature most of the discussions of higher order asymptotic freedom 

corrections have been done in the formal approach of Section 1.3. We shall begin 

with this approach. Higher order asymptotic freedom formulae, expressed in terms 

of parton distributions, will be given at the end of this Section. 

2.1 Effective coupling constant 

The solution of Eq. (2.46) with B(g) given by 

inverse powers of In 2 
A2 

with the result 

*2 

z2(Q2) 
16n2 

= 1 - 

B,ln d 
A2 

% 
7 

0 

In In C 
A2 

in2 C?Z 
A2 

Eq. expanded in 

. (2.88) 

Here and following (Buras, Floratos, Ross and Sachrajda, lY77)Fihas been chosen so 

that there are no further 

p2, A2 and g2 are related 

terms of order l/(ln2 Q2/A2). A little algebra shows that 

to each other by 

7 
AL = p 2 exp 167~~ 81 - - - - ln( !30g2) 

1 
. (2.89) 

Eqs. (2.88) and (2.89) are generalizations of Eqs. (2.50) and (2.51), respectively. 
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In what follows we want to present the corresponding generalizations of Eqs. (2.69) 

and (2,74). The derivation of the formulae below is presented in great detail in 

Sections VII and VIII. 

2.2. Non-singlet structure functions 

For non-singlet structure functions which do not vanish in the leading order, 

namely FyS, FFS and FyS, the generalization of Eqs. (2.69a) and (2.69b) are given 

as follows 

MN% Q2) - 6 k k ’ - NsAfstQ;) 

[ 
lnQ1. 

A2 Q2 
In o 

A2 

1 -dkS 

k = 1,2,3 (2.90a) 

J 

and 

Mrs (n, Q2) = 6 #:" 
c 1 

ln$ 
-dFJS 

A2 
k = 1,2,3 (2.90b) 

where Afs are (independent of Qz) constants which are related to At’(Q$ by 

Eq. (7.22). Furthermore 

where 

(l),n 
RNS ‘NS 

(Oh 

k,n = Br,t ’ 28 - - 
‘NS f3 

k = 1,2,3 
0 28; l ’ 

(2.91) 

(2.92) 

The parameters Bfz and ygin 
? have been defined in Eqs. (2.67) and (2.68) 

respectively and d” 
NS is given by Eq. (2.70). For the longitudinal structure function 

we have 
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SO1 
& x”-~F~~(x, Q2) = L 

&NS 

NS 
BL,n 

lnQf 
A2 [ I 2 

In Q. 
7 

-d”Ns 
(2.93) 

where Bysn is defined in Eq. (2.67). Because the longitudinal structure function 
9 

vanishes in the leading order it follows that in the order considered An NS(Qi) is the 

same as in Eq. (2.69a). Furthermore in obtaining (2.93) the leading order formula 

for g2(Q2) (2 50) should be used. It turns out that 6 (2) - gL 
? l 9 

NS - NS 

and therefore Eq. 

(2.93) can be written as follows (Zee, Wilczek, Treiman, 1974) 

s1 
0 

dx x~-‘F;~(,, Q2) = 
BNS 

L+-’ s l dx x”-~F;?x, Q2) 1 

B lnQ1 O 

(2.94) 

A2 
LO 

0 

where “LO” indicates that the moments of F2 NS(x, Q2) are given by the leading 

order expression (2.69). 

Finally we give formulae for Brt (l),n 
9 

and numerical resuits for yNs . The 

parameters NS BL n have been calculated by (Zee, Wilczek and Treiman, 1974) and are 
? 

given as follows 

BNS 16 1 
bn = mm . (2.95) 

BNS NS 
1 ,n’ B2,n and By: have been calculated by (Bardeen, Buras, Duke, Muta, 1978) 9 

and recalculated by (Floratos, Ross, Sachrajda, 1979f 12,F13 
They are given as follows 

BNS 3 { ? 1 n 2,n 
= 

'jl,l~' 
4I~-&J n 1 

1 
1 

j=l 1 j=l ‘j- 

(In h - yEI , (2.96) 
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BNS 
Ln 

= By; - By; 
? , 

and 

BNS NS 4 4n+2 
34 = B2,n -3 iii) 

FERMILAB-Pub-79/ 17-THY 

(2.97) 

. (2.98) 

The constant yE is the Euler-Masheroni constant yE = 0.5772... We shall comment 

on the terms (In 4~ - yE) in subsection 2.5. 

I l),n The two-loop anomalous dimensions -{is have been calculateo by (‘t%ratos, 

Ross and Sachrajda, 1977). We give only their numerical values in Table 3 since the 

corresponding analytic expressions in the original paper are rather complicated. 

(l),n Relatively simple analytic expressions for yNs can be found in the paper by 

(Gonzalez-Arroyo, Lopez and Yndurain, 1978). 

2.3. Corrections to parton model sum rules 

It follows from Eqs. (2.95) to (2.98) that the sum rules (2.41) to (2.43) are no 

longer satisfied. The Adler sum rule (2.40), which expresses charge conservation, 

is, however, still respected. We have (Bardeen, Buras, Duke, Muta, 1978; Altatelli, 

Ellis, Martinelli, 1978)F’4 

F;p+F;p] = 6 l- 
[ (33-Zln$] 

and 

‘,’ dx [F\Ip - Fyp] q ’ 1 -(33 28) 1 2 

n A2 
The violation of Callan-Gross relation (2.43) is expressed by Eq- (2.94). 

(2.99) 

(2.100) 
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2.4. Singlet structure functions 

The expressions for the moments of the singlet structure functions with 

higher order corrections included have been first found by (Fioratos, Ross and 

Sachrajda, 1979). Here we present equivalent but simpler expressions of (Bardeen 

and Buras, 1979b). 

For the singlet structure functions which do not vanish in the leading order, 

namely Fs and F!,, the generalizations of Eqs. (2.74aj and (2.74b) are as follows F15 

M$n, Q2) = &$Ai(Q$ 
R+ (Q2) 

1 + k,n 2 
3,ln Q 

A2 

Rk’ ,(Qz) 

Q2 
+ f ._(QfQ;)R;- 

B,ln o 
A2 

+ +-,(Q;) 
R,&Q2) 

-2 

Bo In 3 
1L 

$ ,(Q ;) 

Q2 
B, In o 

A2 

+ f -+tQ;Q;)R;+ 

I [ 

ln$ 

Q2 
In 0 

A2 

1 
1 
J 

In 5 

I 

-d” + 

Q2 
In 0 

A2 

-d_” 

k = 1,2 

andF16 

M$n, Q2) = 6t??n 
1 + Rc n(Q2) ’ I 2 r 1 ln$ 

-d’: 

B, In e 
A2 

A2 

+ 6 kAW 
$ n 

R- (Q2) 
1 -t k,n -3 

1 BolnQf 
A2 

-d_” 
k = 1,2 

(2.101a) 

(2.101b) 

where 
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dt - d: - 1 

fTk(Q!Q;) = -- 1 Q2 7 (2.102) 

3. In 0 
A2 

and 

RT,* = 
y (lh 

7+ 
2B 

0 

with yp!ln given by Eqs. (2.110) and (2.11 I). Furthermore 

2 R;,n(Q ) 
B 

’ = R;,n - Fo F d” lnln 2 
A2 

and Ai and x,’ are constants to be determined from experiment. 

The parameters Ri n are given as follows 9 

where 

and 

+l),n pB 
%,n = S,n + 28 - $+ - 2~ 

,W,n 
0 

-+n 
+A -A 

n 
‘0 0 - f 

R; n = B;,, 
y W,n x nB 

+ 1 
++t--- 

y(l)4 
k = I,2 

+- 
9 7 2fi; 2Bo+ x:-x” 

k = 1,2 

J, ( 
x n 0 

Bk’,n = Bk,n ’ 
+ - TJJQ > 

BG k,n * 

(2.103) 

(2.104) 

(2.105) 

(2.106) 

(2.107) 

(2.108) 
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B* G k n and B k n are defined in Eqs. (2.75) and (2.76) respectively. Furthermore 9 , 

y (lb = -- (2.109) 

y(l),n = 1 1 
-+ 

( A”- A;) YJpO&! 
- 9; Y$-x”)+ &Y$yJ r ( 

y(l)7n = 1 1 
+- 

( A”- $> Yq”g c ( 9; Y$- A:) + 9 qny$Ohn 
3 

yW,n = 
-I-+ (X”--x=> 

where 

(2.110) 

(2.111) 

(2.112) 

(2.113) 

(l),n 
yGG (2.114) 

2%; = 04 (l),n 
- y$G YJ~,J, + (l),n 

‘: ) y+G (2.115) 

(2.116) 

and $,l’ . . & are defined in Eq. (2.73). Finally d”, are given by Eq. (2.77). For the 

longitudinal structure function we have 
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dx 
x”-~F;(x, 

Q2) 2 = 
A; (Q,) 

6 L B;,n 
0 + 

3 oln 
Q2 2 

12 

+ A+(Q2)S L Bl,n 
n O 9 

inPI 
A2 Q2 

In 0 
A2 

In QZ -dh 
A2 - l- Q2 

In o 
s A2 

-d: 
(2.117) 

where A’,(Qz) are the same constants which enter Eq. (2.74) and Bt n are given by 9 
formulae (2.107) and (2.108) with k = L. 

Now we give the formulae for Bt n G 
and B k.n and numerical results for the . 

two-loop anomalous dimensions y (l),n ’ (l),n (1) (1) ,i,9 9 y,,, G * ‘Y Gi, and YGG* We have (Bardeen, 

Buras, Duke, Muta, 1978) 

B;,, = B;; k = 1,2,L 9 9 
(2.118) 

where BFz are given by Eqs. (2.98)-(2.100). Next (Walsh and Zerwas, 1973; 
9 

Kingsley, 1973; Hinchliffe and Llewellyn-Smith, 1977a) 

BG 8f 
L,n = (n + I)(n + 2) 

(2.119) 

where f is the number of flavors. The parameters 8; n G 
and Bl,n have been 9 

calculated by (Bardeen, Buras, Duke, and Muta, 1978) and (Floratos, Ross and 

Sachrajda, 1979). 
F12,F13 They are given as follows 
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BG 4 1 n*+n+2 n 1 
2,n 

= 2f [ 4 
n+l 

- 
n+2+-- n2 n(n + l)(n + 21 

( 1+ j=l T c )I 

BG G G 
1,n = B 2,n - B L,n . 

(2.120) 

(2.121) 

(114 Finally the elements of the two-loop anomalous dimension matrix Yij have been 

caIcuIated by (Floratos, Ross and Sachrajda, 1979) and are collected in Table 3. 

This completes the presentation of the formal expressions needed for 

phenomenological study of higher order corrections. Parton model formulae for 

higher order corrections are discussed in Section ILF. 

2.5. Miscellaneous remarks 

We want to make a few explanatory remarks about the formulae above. 

Derivations and detailed discussions are included in Sections VII and VIII. 
. FIT’ 

As pointed out by (Floratos, Ross and Sachrajda, 19771 the parameters Blk n 
9 

(l),n and the two-loop anomalous dimensions yNs and yj;’ 4 . . are renormalization 

prescription dependent and generally gauge dependent. In other words they depend 

on how one renormalizes the divergent amplitudes used to calcuiate these 

quantities. Any physical quantity cannot, of course, depend on renormalization 

scheme, and the renormalization prescription dependences of Bjk n and of two-loop 
9 

anomalous dimensions cancel in the expressions for physical quantities, i.e. in 
Fl8 

formulae (2.921, (2.105) and (2.106). However in order for the cancellation to occur 

Bjk n, have to be calculated in the same scheme. All the 7 
yEtn and y.(;)yn 

expressions for Bk,n and the two-loop anomalous dimensions listed above 

correspond to ‘t Hooft’s minimal subtraction scheme (‘t Hooft, 1973). A nice 
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property of this scheme is that Bj W,n 
k,n’ yNS and y!ll) .. 4 calculated in this -scheme 

are gauge independent (Caswell and Wilczek, 1974). Calculations of Bk n in other 9 
schemes have been made by (Kingsley, 1973; Calvo, 1977; De Rujula, Georgi and 

Politzer, 1977a; Altarelli, Ellis, Martinelli, 1978; Kubar-And& and Paige, 1979).Fly 

The terms which involve (In HIT - y E) can be absorbed by redefining the scale 

parameter A (Bardeen, Buras, Duke, Muta, 1978). Generally this can be done with 

any term in Rlk n proportional to y i;” in the case of non-singlet structure 
9 

functions and with any term proportional to X, n in the case of singlet structure 

functions. This freedom of defining A is related to the freedom of defining the 

effective coupling constant when solving the renormalization group equations. 

Therefore a numerical value of A extracted from experiment on the basis of 

higher order formulae only has a meaning if the definition of the effective coupling 

constant is given at the same time. The same comment applies to numerical values 
s F20 

of parameters Rt( n. We shall give specific examples in Section VII. 9 

D. Mass Corrections 

SO far in this review we have discussed only the scaling violations due to QCD 

effects. Certainly at low values of Q2 3 0 (few GeV2) target mass, heavy quark 

mass effects and higher twist corrections will not be negligible. Here we shall indicate ho 

the formulae presented above are modified in the presence of masses. We shall comment o 

higher twist contributions later on. 

In the last two years there has been a lot of progress in the understanding of 

mass corrections in the framework of QCD but we think the question is not 

completely solved. Neglecting the warnings for a moment which will be made 

subsequently, the modifications due to mass effects in the formulae above are as 

follows. We shall discuss here only target mass corrections and mass corrections in 

the case of heavy quark production off light quarks in v and 7 scattering. More 

general cases are discussed by (Georgi and Politzer, 1976) and (Barbieri, Ellis, 

Galllard and Ross, 1976a, b). 
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1. Target mass-corrections 

In Section 1I.C we have seen that asymptotic freedom predictions are 

particularly simple when given for the moments (Cornwall and Norton, 1968) 

1 
Mh Q2) = j- dx x”-~F(x, Q2) 

0 
(2.122) 

since to each given moment (n - 2) and for large values of Q2 only a small number 

of operators of a given spin n (so-called twist-2 operators) contribute. 

For lower values of Q2 the mass effects are non-negligible and this is no 

longer true. In fact there are infinitely many operators of leading twist and 

different spin which contribute to the n-th moment in the presence of masses. It 

has been demonstrated by Nachtmann (1973) however, that one can redefine the 

moments (2.122) in such a way that to the (n-2) moment only operators of spin n 

will contribute as in the massless case. 

The Nachtmann moments take the following form 

Mi(n, Q2) = l ‘dx * 
0 Xk 

Ki(n, x, Q’)Fi(x, Q2) (2.123) 

where k = 2 for i q 3 and k = 3 for i = 2. n is even for electromagnetic structure 

functions. For v,; structure functions we have: 

p+v 
2 , F;-’ n even 

and 

Fv-v 
2 , F;” n odd 

Furthermore 

(2.124) 

n2 + 2n + 3 + 3(n 
K2(n, x, Q2) = 

+ l#T +n(n+2) 

(n + 2)(n + 3) (2.125) 

and 
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K3(n, x, Q2) = 

Here 

l+(n+l) 
(n + 2) . (2.126) 

(2.127) 

and m is the mass of the target. For m2!Q2+ 0 Eq. (2.123) reduces to (2.122). In 

Eq. (2.124) Fi(x, Q2) are the experimentally measured structure functions and for 

lMi(n, Q2) we can take the asymptotic freedom predictions as calculated for the 

massless case. In other words the functions Ki(n, x, QL) are supposed to take care 

of target mass effects present in the data so that in evaluating the left-hand side 

of Eq. (2.123) by means of the formulae of Section I1.C we do not need to think 

about target mass effects at all. For the derivation of the formulae (2.123-2.127) 

we refer the interested reader to the papers by Nachtmann (1973, 1974) and Wand- 

zura (1977). Similar formulae have also been discussed by (Baluni and Eichten, 1976a,b). 

One can also apply target mass-effects directly to the structure functions as 

has been done by Georgi and Politzer (19761, De Rujula, Georgi, Politzer (1977a,b) 

and by Barbieri, Ellis, Gaillard and Ross (1976a, b). If in the massless case 

vW2(x, Q2) s fix, Q2) (2.128) 

then with target mass corrections included 
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vW2(x, Q2) = 1 $ c%C, Q2) 

. (2.129) 

Similar expressions exist for Wl(x, Q2) and VW3(x, Q2) which can be found in the 

original papers. 

The mass effects introduced through Eq. (2.129) are supposed to be equivalent 

to those represented by the expressions (2.123). This is only true formally (Buras, 

Duke, 1978; Bitar, Johnson and Tung, 1979). In practical applications in which one 

has to take into account that for finite Q2 5 < 1, formulae (2.129) and (2.123) lead 

to different results. In particular Nachtmann moments lead to the decrease of the 

parameter A relative to the massless case (Bossetti et al., 1978) whereas the 

expressions like (2.129) lead to its increase (Buras, Floratos, Sachrajda and Ross, 

1977; Fox, 1977). Critical discussions of the two approaches above can be found in 

the papers by (Barbieri, Ellis, Gaillard and Ross, 1976a, b; Ellis, Petronzio and 

Parisi, 1976; Gross, Treiman and Wilczek, 1976; Bitar, Johnson and Tung, 1979). It 

follows from these discussions that one has to be very careful in using equations 

like (2.129) for 5 +O or 5 s 1 (for earlier discussions on related points see 

Broadhurst (1975), Schnitzer (1971) and Dash (1972)). Bitar, Johnson and Tung (1979) 

and Johnson and Tung (1979) have suggested how the problems of the formulae above 

for 5 + 1 can be overcome. It is however not clear whether the problems above can 

be solved in perturbation theory in a unique way. 
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2. Heavy quark mass corrections 

If a heavy quark with mass mf is produced off a light quark in v or 7 

scattering the standard parton model formulae are modified. The modification in 

question have been formulated and calculated by (Georgi and Politzer, 1976) and 

subsequently rederived in various ways by (Barbieri et al., 1976a, b). They have 

also been discussed in detail by (Barnett, 1976) and by (Kaplan and Martin, 1976). 

The procedure is as follows. For a light to heavy quark transition one replaces the 

light quark distribution as follows 

x qL(x, Q2) + ?S qLc 9 Q2) (2.130) 

where 

2 
Q +m 

“5= 5 
: 4 

= X+2mEy (2.131) 

and m is the proton mass. In addition the corresponding y distribution is modified 

according to the following rule 

( 
1 

i [ 
r 2 2 

+ (1-y) 
(1 - yJ2 

+;p k y-5 ( ,3 
The kinematical bounds are 

’ 2 l 
m: mf 2 

-- 2mEy 2 ’ -- 
2mE 

2 
mf m: 

y 1 2mE(l - x) 2 m 

et1 -i , . (2.132) 

(2.133) 

(2.134) 
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from which it follows that the effect of a new quark is seen first at high y and 

small x values. In addition since [ > x and qL( 5, Q”) is a decreasing function of F; 

the heavy quark contribution is suppressed at all values of x relative to the 

contribution of the light-to-light quark transition. Furthermore the y distributions 

are distorted relative to the massless case. In summary the full power of the new 

contributions due to heavy quark production is expected to be seen only at energies 

well above the threshold. For a detailed description of these effects we refer the 

reader to papers by (Barnett, 1976), (Kaplan and Martin, 1976) and (Albright and 

Shrock, 1977).F21 

We have dealt here only with mass effects due to light quark to heavy quark 

transitions. The treatment of light or heavy quark production off heavy quarks is 

more complicated and can be found in the papers by (Georgi and Poiitzer, 1976) and 

(Barbieri, Ellis, Gaillard and Ross, 1976a, b). 

E. Structure of Common Asymptotic Freedom Phenomenology 

In order to help the reader to use the formulae of this section in 

phenomenological applications we present here the structure of common asymp- 

totic freedom phenomenology in the form of a recipe. This procedure should be 

regarded only as a first try in testing the theory. ‘More fancy ways of confronting 

asymptotic freedom predictions with the data are discussed in Sections VI, VII and VIII. 

1. Leading order 

In the leading order of asymptotic freedom all parton model sum rules and 

relations are satisfied. Therefore all known parton model formulae (see Section 

1I.B) for deep-inelastic processes are still valid except that now the parton 

distributions depend on Q2. 
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An idealized version of a procedure for testing asymptotic freedom 

predictions would be then as follows: 

Step 1. Write parton model formulae for all experimentally measured deep- 

inelastic processes as ep, up, vN, TIN and in particular consider the quantities <x>, 

<Y>, v’w2, u’w3, & and also the moments of structure functions. 

Step 2. Collect all existing deep-inelastic data. 

Step 3. Choose a value of Q2 = Qz for which perturbation theory makes sense 

(say Q:: 2 GeV2, preferably higher) and for which the data are good enough so 

that all quark distributions can be found at this value of Q2 for as broad a range in 

x as possible. 

Step 4. Find qi(x, Qzh 

5. Step Choose a gluon distribution G(x, Q$. The shape of the gluon 

distribution (e.g. the power of (1 - x)) is not specified directly by the data. 

However the second moment n = 2 is fixed by energy-momentum conservation once 

the quark distributions are known. 

Step 6. Choose A. A good starting point is A= 0.5 GeV. 

i) In the moment version: Step 7. 

a. calculate< Aij(Q~)>,, <C(Qt)> n, cC(Qz) >,,. 

b. calculate < Aij(Q2)>, and CC (Q2) >,, using Eqs. (2.84)-(2.85). 

C. calculate the moments of structure functions using formulae of 

Section 1I.B. 

d. try to include target mass corrections using Nachtmann moments 

keeping in mind warnings of Section 1I.D. 

ii) In the local version: 

a* calculate ‘ij(x, Q:), C(X, Qz) and G(x, Q$ and use them as boundary 

conditions to the integro-differential Eqs. (2.52)-(2.54). 
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b. solve these equations either numerically or by means of approximate 

methods discussed in Section V. 

C. insert the results for A..(x, Q2), C(x, Q2) in the standard parton 
‘J 

model formulae (Section I1.B) and calculate various cross-sections and 

structure functions. 

Step 8. Compare the results of Step 7 with the data. If the agreement is bad, 

change a few FORTRAN cards in Steps 5 and 6 and possibly in Step 4. 

Check whether fits with various values of Qi give results compatible Step 9. 

with each other. This last step can be omitted if the formal Eqs. (2.69b) and (2.74b) 

are used. 

A few comments are necessary. 

or x and y distributions as functions 

In calculating the v,; total cross-sections 

of energy, one has to integrate over Q2 

essentially in the range from 0 to 2 ME. Since the effective coupling constant 
-2 2 g (Q ) is large for Q2 < 1 - 2 GeV2 and consequently perturbative methods are 

inapplicable one has to make assumptions about the Q2 dependence of the quark 

distributions for the low values of Q’. Presumably the best method is to use in this 

Q2 range the data itself (Fox, 1978a).Another way to circumvent this problem is to 

make cuts in Q2 in the data and consequently calculate the experimental as well as 

theoretical cross-sections without including the low range of Q’ where perturbation 

theory does not make sense (Buras, 1977). 

2. Higher orders 

The phenomenology of higher order asymptotic freedom corrections has only 

reached an early stage of its development, and, consequently, we make only a few 

comments here. 

One can either directly compare formulae (2.90a, b) and (2.lOla, b) with the 

data or devise methods by means of which the effects of higher order corrections 



-48- FERMILAB-Pub-79/17-THY 

on the leading order predictions are most clearly seen. A typical example of such a 

method is the An scheme proposed by (Bate, 1978) and developed by (Bardeen et al ., 

1978). We shall discuss this scheme and its various versions in Section VII and turn 

now to a parton model formulation of asymptotic freedom beyond the leading 

order. 

F. Parton Model Formulae for Higher Order Corrections 

We first recall that in the leading order of asymptotic freedom the formulae 

for the Q2 development of deep-inelastic structure functions can be found by 

means of two simple rules: 

Rule 1 

Write a given structure function or its moments in terms of parton 

distributions using the standard parton model formulae of Section II.B, e.g., 

2 F;p(x, Q ) = 18 5 x1(x, Q2) + ; xAep(x, Q2) 

or 

2 M;p(n, Q ) = 18 5 <c (Q2)>, + ;< A(Q2)>zp 

(2.135a) 

. (2.13533) 

Rule 2 

Find the Q2 evolution of the parton distributions or their moments by using 

Eqs. (2.52-2.54) or Eqs. (2.84-2.861, respectively. 

Here we want to present a generalization of these two rules which includes 

next-to-leading order corrections. 

As we shall discuss in more detail in Section VIII, there is no unique way to 

define parton distributions beyond the leading order of asymptotic freedom, and 
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various definitions are possible. Here we shall present one (Baulieu and Kounnas, 

1978; Kodaira and Uematsu, 1978) which is particularly useful in connection with 

so-called perturbative QCD (Politzer, 1977a) on which we shall comment in Section 

IX. 

Let us illustrate the new rules 1’ and 2’ by considering the moments 

M;p(n, Q2) of Eq. (2.135b) 

Rule 1’ 

M:P(n, Q2) = & 1 <~(Q2bn (1 +-3 B ;,n) +yi;,n<G(Q2)>n 1 

+ ; 
-2 2 

1 +a(Q) BySn 
16n2 ’ 

(2.136) 

where es sJI -G 
2,n’ 2,n and B 2,n are obtained from Eqs. (2.961, (2.118) and (2.120) 

respectively, by removing there terms (In ~TF - y E) (See Section VII). The factors 

which multiply various parton distributions are simply the Wilson coefficient 

functions C&.,(1, g2), C!j .(I, i2) and C:yn(l, z2)* For any other structure 
9 

function, one just replaces the index “2” by “k” and changes charge factors and non- 

singlet quark distributions in accordance with the rules of the standard parton 

model. For F3, <C(Q2) >,, and <G(Q’)>, are absent. The contributions of the two- 

loop 8 function and the two-loop anomalous dimension matrix are contained in the 

definition of the parton distributions. 

We have found explicit expressions for the Q2 evolution of the parton 

distributions in Eq. (2.136) which read as follows: 
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Rule 2’ 

< Aij(Q2)>, = < A ij(Q4> n 
d”Ns 

f&(Q’, Qz) 

d” 
<c(Q2bn = { (1 - ~,kC (Qf$, - T~,<G(Q$, ) if&& [ 1 + 

ij2(Q;, 
H$ (Q2, Q;) 

+ { cr,<C(Q& + En<G(Q&, > = [ 1 4 
g2(Q;, 

H$(Q’, $1 

(2.137) 

(2.138) 

cC(Q2bn = { an< G(Qz)$, - E~<Z(Q~)>~} ifd d’ HyG(Q2, Q2) [ 1 i2(Q;) 0 

d” 
+ i (1 - “,)<G(Q;) ‘,, + cn< C(Q;) >n ) - H_“,(Q’, Qf) (2.139) 

where CY n, a,, and cn are given in Eq. (2.87), and dLs and d2 have been defined in 

Eqs. (2.70) and (2.77) respectively. Notice similarities with the leading order 

expressions (2.84-2.86). The factors H: which include higher order corrections are 

given as follows: 

HFs(Q2, Qz) = 1 + 
[z2(Q2) - g2(Q$] 

16~2 Gs (2.140) 
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Hyi = l+ 
[ i2(Q2) - g2(Q2,,] 

167~2 

where 
y(l),n +T 

28, + x; - A; i- -4J 

(2.142) 

(1 An 
YkT 

yg - A) 

28, +xy -AS” 
i=G 

C 

Ki+T = 

and 

2; = 
Y!‘$” x “B 2 1 
*B - - - 

0 a32 0 

(2.143) 

(2.144) 

Finally y :;lPn are defined in Eqs. (2.109-2.112) and the Q2 evolution of g2(Q2) 

which enters Eqs. (2.137-2.139) is given in Eq. (2.88). On the other hand, in the 

order considered the leading order formula (2.50) for g2(Q2) should be used in Eqs. 

(2.1361, (2.140) and (2.141). The derivation and properties of Eqs. (2.138-2.139) are 

discussed in Section VIII. The numerical values of the parameters which enter Eqs. 

(2.137)- (2.144) can be found in Table II. 

We would like to remark that the parton distributions as given in Eqs. (2.136- 

2.139) are renormalization-prescription dependent, i.e., they depend on how various 

operators in the Wilson operator product expansion are renormalized. This 

renormalization prescription dependence is cancelled, however, by that of the Bits 

which enter Eq. (2.136). Since one can define parton distributions in many ways 

anyhow, we think that one should not worry about this renormalization prescription 

dependence of parton distributions discussed here. For different definitions of 
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parton distributions we refer the reader to the papers by (Altarelli, Ellis and 

Martinelli, 1978) and (Floratos, Ross and Sachrajda, 1979). In particular Floratos et 

al. present explicit expressions for the Q2 evolution of their parton distributions. 

G. Longitudinal Structure Functions 

Finally we quote the formula for the longitudinal structure function which we 

shall derive in Section VIII. We have 

FL(x, Q2) = [F F2(y, Q2) + 6 :)8f(l - ;)y c(~, Q’] (2.144) 

where F2(y, Q2) and G(y, Q2) are the full structure functions F2 (singlet + 

nonsinglet) and the gluon distribution, respectively. The leading order formulae for 

the Q2 evolution of F2(y, Q2) and G(y, Q2) should be used in Eq. (2.144). For f = 4, 

df) = 5/18 for ep scattering and J, = 1 for v and J scattering. 42) The 

generalizations to arbitary number of flavors are straightforward. 
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III. QUANTUM CHROMODYNAMICS AND TOOLS TO STUDY IT 

In this Section we shall collect certain information about Quantum Chromo- 

dynamics (QCD). We shall also present the tools necessary to extract QCD 

predictions for deep-inelastic scattering. We shall discuss regularization, renorma- 

lization, operator product expansion and renormalization group equations. Our 

discussion is mainly devoted to those readers who would like to gain enough 

information about these topics to be able to calculate such quantities as the B 

function, the anomalous dimensions of quark and gluon fields and the anomalous 

dimensions of various operators relevant for the discussion of scaling violations. 

Therefore, in our presentation we shall try only to give the reader a feeling for 

what is going on-very often by showing examples. We refer the interested reader 

to the textbooks (Bogolubov and Shirkov, 1959; Bjorken and Drell, 1965; De Rafael, 

1977) and to various oaoers, reviews and lectures (Zimmerman, 1971: Abers and 

Lee, 1973: Politzer, 1974; Coleman, 1971: Gross and Wllczek,L973b, 1974; 

Abarbanel, 1974: Gross, 1976: Crewther. 1976: Ellis. 1976: Lautrup, 1976; Taylor. 

1976: Marciano and Pagels, 19781 where the material of this section is presented in 

great depth. This section may be omitted by the experts, without loss of continuity. 

A. Lagrangian and Feynman Rules 

Quantum Chromodynamics is an SU(3)c color gauge theory which describes 

the interactions between quarks and gluons. Quarks are arranged in color triplets 

and come in f flavors. The QCD Lagrangian is given by 

(3.1) 

where a = 1,...8, o, 8 = 1,2,3 and the summation over repeated indices and over fla- 

vors is understood. Furthermore 



-54- FERMILAB-Pub-79/17-THY 

Gd = 2 Ga-a Ga+gfabcGbGc 
Llv IIV VP P v 9 (3.2) 

is the field strength and 

(3.3) 

is the covariant derivative. $ c1 and G; are fermion and gluon fields respectively. 

Finally g is the strong interaction coupling constant. The matrices Xa obey the 

commutation relations 

[XQq = ifabclc (3.4) 

with fabc being the structure constants of SU(3)c. It should be remarked that in 

order to specify the theory completely one must add a gauge fixing term to -E4 

which for commonly used gauges (covariant gauges) has the form: 

-Tr [(auGu)21 /CI, where o is a gauge parameter. In these gauges one must add 

Fadeev-Popov ghost interactions to the Lagrangian. In the axial gauge (G; = 0) 

there are no ghosts but the calculations of Feynman diagrams are generally more 

complicated than in covariant gauges. From (3.1) by means of standard techniques 

(e.g. ‘t Hooft, Veltman, 1973; Gross, Wilczek, 1973b) one can derive Feynman rules 

which are shown in Fig. 4. 

The new features relative to Quantum Electrodynamics are 

i) SU(3) group factors 

ii) existence of the triple and quartic gluon couplings 

and 

iii) existence of fictitious ghost couplings. 

Otherwise the calculations of QCD Feynman diagrams are very similar to the 

corresponding QED calculations. The relevant group factors are defined as follows: 
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6 &C(G) = facd fbCd 

S,bT(R) = fXjt,‘~j 

For an SU(3) gauge theory with f flavors, as discussed here, 

. (3.5) 

C*(R) = ; , C(G) = 3 and T(R) = if 9 l (3.6) 

To make the phenomenological applications easier, in all expressions presented in 

this review, the values of the group theory factors as given by Eq. (3.6) have been 

explicitly used. 

B. Renormalization and Renormalization Group Equations 

As in QED many calculations of QCD Feynman diagrams with one or more 

loops lead to divergent results, and renormalizations of various quantities which 

enter the calculations (vertices, propagators) are necessary in order to obtain finite 

physical answers. There exists a whole machinery for extracting finite physical 

answers from perturbation theory, called the Renormalization Program. It consists 

of two steps i) regularization and ii) renormalization. 

1, Dimensional regularization 

The first step in any renormalization program is to identify the singularities 

of a given Feynman diagram and extract them in such a way that renormalization 

can be easily performed. One can achieve this in many ways, but a particularly 

elegant and simple method is the dimensional regularization procedure of (‘t Hooft 

and Veltman, 1972)F22 In which Feynman diagrams are evaluated in D=4-e 

dimensions and singularities are extracted as poles: l/c, l/c2, etc. 

Let us illustrate this method with a simple example. Consider the one-loop 

diagram of Fig. 5a. It represents the virtual gluon correction to the quark 
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propagator. Here we treat gluons and quarks as massless particles, and, in order to 

avoid mass singularities, we take external quark momentum slightly off-shell 

(pi < 0). Using the Feynman rules of Fig. 4, we first obtain (in the Feynman gauge) 

1 (2)(8 = r g2 J d Dk ‘v Ib ‘v 
(2nr) D k2(k - p12 

= rg2(,-21 J - dDk. Ic 
(2n) D k2(k - pJ2 

(3.7) 

(3.8) 

where we have used formula (A. 18) to reduce the Dirac algebra in D dimensions 

and we have put all group and i factors in one symbol r. Conventionally we have 

denoted the whole result by C (2\h). N t ex using the Feynman parametrization (A. 13) 

for the denominators and integrating over k by means of the formula (A.l), we 

obtain 

where 

(3.9) 

and r(e/2) and B(2 - c/2, 1 - E /2) are Euler-Gamma and Euler-Beta functions, 

respectively. The singularity has been nicely isolated in the Gamma function 

l?(~/2). It is instructive to expand Eq. (3.10) around the singular point E z 0. 

Before doing this let us recall that in D f 4 dimensions, g2 is not dimensionless 

although it is dimensionless in four dimensions. It is convenient to work with a 

dimensionless coupling in D dimensions, and so we make in (3.10) the replacement 

(3.10) 
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(3.11) 

where 1 is an arbitrary parameter with the dimensions of mass and g2 on the r.h.s. 

of Eq. (3.11) is dimensionless. Now expanding Eq. (3.10) around E: = 0 by utilizing 

formula (A. 111, we obtain after neglecting terms O(E) 

(2) 
1 (p2) = -ir_gL[$-ln$+l+ln4n-~E] 

16n2 
(3.12) 

where yE is the Euler-Mascheroni constant which we already encountered in 

Section II. We have thus extracted the singularity as a l/c pole and have obtained 

a well-defined finite part. 

2. Renormalization 

In order to illustrate the general idea of renormalization, consider the QCD 

Lagrangian (3.1) continued to D = 4 - E: dimensions. For simplicity we put 

fermion masses to zero (mo = 0) and we work with the dimensionless coupling 

constant g by making the replacement (3.11) in (3.1). We denote the resulting 

Lagr angian by 

. (3.13) 

Using this Lagrangian we shall encounter singularities in the Feynman diagrams 

which will appear as poles in E. A specific example has been shown above. To 

remove these divergences we add to 9 counter terms. We can write the 
E 

resulting, renormalized, Lagrangian pR in terms of the bare fields (Gz)‘, ‘4: and 

the bare coupling go as follows 
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The bare and renormalized quantities are related to each other by the following 

equations 

(3.15) 

(3.16) 

(3.17) 

where +, J, 2 and Zg are renormalization constants, which diverge for E + 0. ZG, 

Z9 and Zg are known once the counter terms are specified. Before going into 

detail let us get a feeling for the renormalization procedure. One can look upon it 

in two obviously equivalent ways; 

a) the calculation of a Feynman Diagram is performed in terms of the bare 

parameters (e.g. go) and the resulting divergent expression is rendered finite by 

rewriting it in terms of the renormalized parameters by utilizing relations (3.15)- 

(3.17). One can imagine that all singularities have been absorbed by introducing the 

renormalized quantities. In practical applications it is often more convenient to 

deal exclusively with renormalized parameters and proceed as follows; 

b) the calculation of a Feynman diagram is performed in terms of the 

renormalized parameters (e.g. g), as in the example of Section III.B.1, and the 

resulting divergent expression is rendered finite by subtracting the singularities in 

one way or another (see below). Once the subtraction scheme has been specified, 

the renormalization constants Zg, z G9 Z3, can be found. 
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Let us illustrate the idea of a subtraction scheme by renormalizing the 

expression (3.12). 

3. Two subtraction schemes 

3.1. Subtraction at p2=- u2 

In this subtraction scheme the renormalized vertices and propagators are 

found by specifying their values at particular values in momentum space. Let us 

consider the following example. 

The unrenormalized inverse fermion propagator S-‘(p) resulting from dia- 

grams 5a and 5b is 

s-1(p) = h + h 1 
(2) 

(P2) (3.18) 

with C(2)(p2) given by Eq. (3.12). We can require that the renormalized inverse 

f ermion propagator 

(2) 
S$P) = b + h lR (P2/u2) 

at p2 = - u2 satisfies 

S$P) 1 
p2,q2 

=6 

where u is an arbitrary momentum. This is achieved if 

1 (2)(p2,u2J = l(2)(P2) - 1(2)(-112) 
R 

(3.19) 

(3.20) 

(3.21) 

Using (3.12) we obtain 
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(2) 
lR (P2/u2) = irg2lnd 

161~~ u2 

Next writing 

S$P) = Z$Sl(P) 

we obtain from (3.181, (3.191, (3.12) and (3.22) 

. 

ZJ, q l+ir$[$-1t-i” 
T2 

+ 1 +ln4n -yE 1 . 

(3.22) 

(3.23) 

3.2. ‘t Hooft’s minimal subtraction scheme 

The method presented above is not the only way to render S-‘(p) finite. By 

putting condition (3.20) we have subtracted from C (2) 2 (p ) not only the singularity 

I/E but also the finite terms. The subtraction procedure in which one subtracts 

only the singularity l/c is called minimal subtraction scheme (MS) and has been 

proposed by (‘t Hooft, 1973). Applying this procedure to Eq. (3.12) we obtain 

(3.24) 

2 

MS 
In%-l-ln4r+yE 

u2 1 
and 

zJll - l+ir-$ f 
MS - 

(3.25) 

(3.26) 

Notice that the expression for the renormalization constant ZQ is very simple in 

‘t Hooft’s scheme. Generally in the scheme in question any renormalization 

constant is just a series of powers of l/c which greatly facilitates the calculations 

of various renormalization group parameters; in particular the calculation of two- 

loop anomalous dimensions (for a discussion see Section 3 of Ross, 1979). Notice 
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that Xg’ is different in the two renormalization schemes considered. This does not 

(2) bother us, however, because Ci is not a physical quantity. cp is, in fact, 

generally only one element of a physical expression. There are other elements in a 

given physical expression which also depend on renormalization procedure. If all 

these elements are put together, their renormalization prescription dependences 

cancel each other as required for a physical quantity (Stuekelberg and Peterman, 

1953). Specific examples of such situations, relevant for deep-inelastic scattering, 

will be discussed in Section VII. 

Our discussion of It Hooft’s minimal subtraction scheme was very superficial, 

Full exposition of this elegant subtraction procedure can be found in the papers by 

(‘t Hooft, 1973; Collins and Macfarlane, 1974; Gross, 1976). In particular Collins 

and Macfarlane discuss a whole class of subtraction schemes which differ from the 

one presented here by a different continuation of the renormalized coupling 

constant to D dimensions. In general instead of (3.11) one can have 

g2 + g2.;JEfk, g2) 

where f(c, g2) is any function of e which has the property f(0, g2) = 1. Each 

different continuation will lead to different finite parts in Eq. (3.25). As we shall 

see in Section VII this type of ambiguity in the finite parts can be absorbed in the 

definition of the effective coupling constant. In particular ,the MS scheme of 

Section VII in which the terms involving (in 4~ -YE) are not present in Eqs. (2.96) 

and (2.120) corresponds to 

(3.27a) 

fk, g2) = 1 -$(in41i-yE) . (3.27b) 
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4. Renormalization group equations 

So far we have shown how to regularize and renormalize Feynman amplitudes. 

In the process we have introduced an arbitrary normalization scale 1-1. In the 

p2 = u2 subtraction scheme p2 stands for the space-like momentum where we 

specify the values of particular Green’s functions. In the ‘t Hooft’s scheme the 

u =u in the renormalized expression appeared through the continuation of the 

renormalized coupling constant to D = 4 - E dimensions. In both schemes the 

value of 1-1 is arbitrary. Certainly the final result of a renormalization procedure 

cannot depend on the value of p and any change in u can be compensated by the 

change in g and the scales of the fields. This is most elegantly expressed by 

renormalization group equations (Stueckelberg and Peterman, 1953; Gell-Mann and 

Low, 1954; Bogolubov and Shirkov, 1959; Callan, 1970, 1972; Symanzik, 1970; 

Wilson, 19691, which we shall discuss now very briefly. 

It is convenient to work with the amputated, renormalized, one-particle 
(+,NG’ 

irreducible, proper vertex functions I’ R (pi, g, E) which are (suppressing 

arguments) defined as follows 

(NJI ,NG) (Nq, ,NG) 
rR 

GR 
= NF 

1 #,o) “nG GR(0,2) 

(N&j 
The renormalized Green functions GR are given by 

‘L\ ‘NC ) 
GR = < 0 IT(JI~...J~~ 

‘4 
G 1.., GNG (0 > 

(3.28) 

(3.29) 

and N 
JI 

and NG stand for the number of external fermion legs and gluon legs 

respectively. In this notation 
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sR 
-1 z r t270) 

R . 

Similar expressions 
(N,/,,NG) 

exist for the unrenormalized proper vertex functions 

rU (pj, go, E) with all renormalized parameters and fields replaced by the 

corresponding bare quantities. Because of (3.15) and (3.16) the proper vertex 

functions rp ‘NG) and rFe’NG) are related to each other by 

(3.30) 

‘N$ ,NG) 
rR 

N+/2 NC/2 (N+,N~) (PjYgY&9]1) = ‘9 ‘G ru (Pj, go, &) 

and the limit 

lim 
E+ 0 

rppNG)(p., g, & ,p 1 = rp’NG)tp., g,p > J I 

exists. 
‘% ,NG) 

Since ru does not depend on u i.e. 

& ru 
‘% yNG) = o 

Y 

we obtain from (3.33) and (3.31) the following renormalization group equations 

C a vrii + B(g) 4 - 1 (N&) “J;y,,, (g) - t y,(g) rR = 0 
where 

Y+(g)= $J & in Z * 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 
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(3.36) 

(3.37) 

The renormalization group functions y,,,(g), Y,(g) and B (g) depend only on g. yJ, (g) 

and yGg) are called anomalous dimensions of the fermion field and gluon field 

respectively. B(g) is the well-known function which governs the Q2 evolution of the 

effective coupling constant as we shall discuss in more detail below. It should be 

remarked that 6(g), y 
* 

(g) and v,(g) depend only on the given theory and not on the 

particular Green’s function considered. 

We would like to remark that generally the renormalization group equations 

(3.34) also involve the derivatives with respect to the masses and the gauge 

parameter ~1. In order to simplify the presentation we neglect these derivatives 

here. For a careful discussion of the renormalization of the gauge parameter we 

refer the reader to Sec. 5.4 of the review by Gross (1976). 

Equation (3.34) when combined with the standard dimensional analysis can be 

used to relate the vertex functions evaluated at momenta pi to the same vertex 

functions evaluated at resealed momenta e’pi. In applications to deep-inelastic 

scattering t = In Q2/u 2. One obtains (see e.g. Gross, 1976) 

(N+‘NG)(,tp 
rR i’ 

g) = r ‘% 9N”)(p itt)) exp 
R ‘9 1 

bt _ 1 ii’t’ dg, N+Y~ (g’)+NG ‘Gtg’) 1 (3.38) 
Et 

B (g’) 

where jj(t> is an effective coupling constant which satisfies the following equation 

; i(t = 0) = g (3.39) 
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and 6 is the physical dimension of rR. 

We observe that once y8(g), u,(g) and B(g) are known, and I’R 
(Np,NG) is 

calculated at momenta corresponding to a single value of t, say t = 0, then Eq. 
(N&) 

(3.38) gives us rR at any resealed momenta etpi with t f 0. 

that equations like (3.38) will be at the basis of discussions of scaling 

predicted in QCD. 

We shall see 

violations as 

5. Calculations of renormalization group functions 

We can obtain y+(g) in g2 order by inserting ZJI of Eq. (3.26) into (3.35) with 

the result (r = iC2(R) = i4/3) 

y+(g) = F! (3.40) 

which corresponds to the Feynman gauge (a = 1). In an arbitrary covariant gauge a 

the result of Eq. (3.40) is to be multiplied by ~1. Alternatively we can calculate 

c&O) ys (g) by using renormalization group Eq. (3.34). We insert Sii 2 rR as given by 

Eqs. (3.19) and (3.25) into renormalization group equations and compare the powers 

of g? Since the g2 expansion of B(g) begins with g3, 8 (g) can be dropped on the 

r.h.s. of Eq. (3.34) if we are interested in y(g) in order g2. Therefore we obtain 

first 

C a 
pFp - 2 yQ(g)] rfy”) = 0 

and consequently (in g2 order) 

(3.41) 

(3.42) 

which by Eq. (3.22) or (3.25) leads to the previous result (3.40). 
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Similarly one can calculate the anomalous dimension of the giuon field, UC(g), 

by considering the diagrams of Fig. 6, with the result (Politzer, 1974; Gross and 

Wilczek, 1973) 

yG(g) = - g2 
161~~ C (3.43) 

where r is the gauge parameter. 

In order to evaluate B(g) to order g3 one considers either the diagrams of Fig. 

7a or the diagrams of Fig. 7b. If the resulting renormalized vertex functions are 
+0,31 

R and $1) respectively then the equations for i3 (g) which follow from 

renormalization group Eq. (3.34) are 

- 
B(g) = - -$ cy,f(O’,,,,) .,,:I 

B(g) = - -$ [u&f(2J)( 5) + 2+$ + Yl ] 

(3.44a) 

(3.44b) 

where f (“‘3\p2/u2) and f(2’1){p2/u2) are defined as follows 

rR 
(093) = g + 

and 

(3.45a) 

(3.455) rR 
(291) = g + _B f(2,1) E1 

16a2 ( 1 P2 
--.- ._ 

Evaluating ff,s) and $zT1’ (Politzer, 1973; Gross and Wilczek, 1973) and using 

(3.40) and (3.43) one obtains from both (3.44a) and (3.44b) 
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B, = ll-ff . 

(3.46) 

(3.47) 

The fact that the coefficient of g3 is negative (for f 2 16) has a very important 

consequence-asymptotic freedom. Inserting (3.46) into (3.39) and choosing 

t = In Q2/p2, as an example, we obtain 

(3.48) 

where we have introduced the parameter A which is related to u2 and i2( u2) = g2 

by Eq. (2.51). For Q2 + CD this coupling constant which measures the effective 

interaction between quarks and gluons at momentum scale Q decreases to zero. 

This is what we mean by asymptotic freedom. As we shall see in subsequent 

sections the smallness of g2(Q2) for sufficiently large Q2 will allow us to calculate 

many quantities in perturbation theory in g2(Q2). This spectacular property is a 

special property of non-abelian gauge theories. F23 

b 
So far we have discussed renormalization, renormalization group equations 

and asymptotic freedom in general. Before showing how these ideas can be used in 

the study of deep-inelastic scattering we have to discuss operator product 

expansion. 
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C. Operator Product Expansion 

The basic object in any discussion of deep-inelastic scattering is the spin 

averaged amplitude T TV for the forward scattering of a current Jp off a hadronic 

state 1 p>. Here J I-r stands either for the electromagnetic current (ep, up 

scattering) or a weak current (v,; scattering). We first introduce the operator 

T 
pv = 

i I d4z eiq l ‘TO,, (z)$(O)) 

which is related to T I.lv by 

T,, v(Q2f V) = ‘P I ‘,,v 1 P ‘spin averaged 

(3.49) 

(3.50) 

Next the amplitude Tpv(Q2, v) can be decomposed into invariant amplitudes as 

follows 

T,JQ2, v) = e,,yrL(Q2,v) + dVvT2(Q2,v) -i c 
paqS - PvaB v T,(Q’, v) (3.51) 

with v = p= q and Q2 = -q*. The tensors e and d 
PV PV 

are defined in Eqs. (2.2) and 

(2.3). 

Following (Wilson, 1969) we can expand the product of currents, which enters 

Eq. (3.491, as a sum of products of local operators 0. 
Lq”‘Pn 

I of definite spin n times 

certain coefficient functions Ci The index i stands for the type of operator and 

will be specified below. In what follows we shall only consider so-called twist 

(twist E dimension - spin) two operators which give the &minant 

contributions to the moments of the structure functions in the Bjorken limit. The 
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higher twist operators are suppressed relative to twist two operators by powers in 

Q2. At not too large values of Q2 they are expected (De Rujula, Georgi, Poiitzer, 

1977a, b; Gottlieb,l978) to be of some importance only for x close to 1. 

The operator product expansion for T is as follows 
lJV 

( 
quqv 

+ g,v- q2 ) qplqp2C1Ln * ($d2) 

Writing next 

‘Pl’i 
I-ll4, 

Ip > = AL(u2)p ul...pu, - traces 

and combining Eqs. (3.50)-(3.53) we obtain 

T,,(Q’,v) = 

(3.52) 

(3.53) 

(3.541 



-7o- FERMILAB-Pub-79/17-THY 

where x is the Bjorken variable (Q*/~v). In writing (3.54) we have dropped the 

trace terms of Eq. (3.53). This is justified if target mass corrections (see Section 

1I.D) can be neglected. The arguments of the coefficient functions indicate that 

they will be calculated in perturbation theory in g2. The sum on the r.h.s. of Eq. 

(3.54) runs over spin n, twist 2 operators such as 

P 1”‘Pn 
‘NS, K 

P’1 a*. lJn 

OIL 
= S’TaY p l=!#*...#n $I a- traces) 

1-11 . . . Pn 

OG 
= s(GkwJ7p*emefpn-l GpnV _ traces) 

(3.55) 

(3.56) 

(3.57) 

where S denotes symmetrization over all Lorentz indices. Since we shall deal only 

with foward spin-averaged matrix elements we do not consider operators with 

negative parity. 
u y.4, 

ON5 are the fermion non-singlet (under physical symmetries) 

operators whereas 0 
+I+.) and o Py’~n 
IJ G are singlet fermion and gluon operators 

respectively. The index K distinguishes between various non-singlet operators. 

Since the Q* dependence of the Wilson coefficient functions, corresponding to 

various non-singlet operators, is common we shall in the following drop the index K. 

Using dispersion relations between deep-inelastic structure functions of Eq. 

(2.1) and the invariant amplitudes of Eq. (3.511, and taking into account (3.54) one 

can express the moments of the structure functions in terms of the Wilson 

coefficient functions and the hadronic matrix elements of various local operators. 

One obtains (Christ, Hasslacher, Mueller, 1972) 

dx x”-*Fk(x, Q*) = I: k = 2,L 
0 i 

(3.58) 
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and 

s1 cjx x”-lF3(x, Q*) = 1 Aiu2)Ci3n . 
0 i 

(3.59) 

Notice that by taking moments the operator product expansion has been projected 

on a given spin; the (n - 2) moment of the structure function depends only on 

operators of spin n. Since there are at most .three types of leading operators of a 

given spin (Eqs. (3.55-3.57)) the theoretical analysis of QCD predictions for deep- 

inelastic scattering is most conveniently done in terms of the moments of various 

structure functions rather than in terms of structure functions themselves. 

A few final remarks about operator product expansion (OPE) are necessary. 

The matrix elements Ain depend on the target ) p>, and are uncalculable in 

perturbation theory if the target is a composite object as for instance the proton. 

The coefficient functions on the other hand do not depend on the target since they 

are determined by the expansion (3.52). They can be calculated in perturbation 

theory. In fact what OPE does for us is to separate perturbatively calculable 

pieces (coefficient functions) in the expression for the moments of structure 

functions from non-perturbative pieces-matrix elements of local operators. A 

brief discussion on this factorization in the framework of the perturbative QCD can 

be found in Section IX. 

We shall now show that the Q* dependence of the coefficient function is 

governed by the renormalization group equations similar to Eq. (3.34). 
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D. Renormalization Group Equations for Wilson Coefficient Functions 

We begin the discussion with the coefficient functions of the non-singlet 

operators of Eq. (3.55). Suppressing for simplicity all the arguments, we write the 

non-singlet part of the operator product expansion of two currents symbolically as 

follows 

JJ I NS = InNS ’ cNSon 
n 

Sandwiching Eq. (3.60) between non-singlet (quark) states we obtain 

<NSIJJ/NS> = 1 C;sO;sNS 
n 9 

where 

<NS lOis INS > = O;s,Ns . 

(3.60) 

(3.61) 

(3.62) 

In order to derive renormalization group equations for C:‘, we have to find first 

renormalization group equations for < NS 1 JJI NS > and O& 
9 
NS. 

ForcNS(JJ(NS > we have similarly to Eq. (3.34) 

[ 
a 

paFt + tw & -*y+(g) 1 <NS IJJ(NS> = o (3.63) 

where y 
+ 

(g) is the anomalous dimension of the quark field (see Eq. 3.40). Due to 

current conservation, the anomalous dimension of the current J is zero. 

Next we define the wave function renormalization 2& of the operator Ois 

bY 
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(3.64) 

where Oiin is the bare operator. 

For the matrix element O\s,Ns we therefore have 

‘Q On 
‘\S NS = n 9 OFiS NS 

‘NS ’ 
(3.65) 

with Z,,, defined by Eq. (3.16). 

Repeating the steps which led us from Eq. (3.31) to Eq. (3.34) we obtain 

1 O"NS,NS = ' 

where 

(3.66) 

(3.67) 

is the anomalous dimension of the operator Ohs. Next combining Eqs. (3.611, (3.63) 

and (3.66) and taking into account that the tensor structure in the expansion (3.60) 

is different for different n (see Eq. 3.52), we finally obtain for each n 

,g+;s($*) = 0 ’ (3.68) 

Notice that we have now written explicitly the arguments of the coefficient 

functions. 

The case of singlet operators 0; and 0: is more complicated because these 

operators mix under renormalization and Eq. (3.64) is replaced by 
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0; = 1 ( q ab oflt” 
b 

a,b = $,G 

Here (2” 
-1 

) is a 2 X 2 matrix. Consequently, Eq. (3.65) is generalized to 

ozc = 
Y ,! zc(zn-l ,,,o;‘; 

b 
a,b,c = $,G 9 

where 

OiC 9 
g <clo;lc> 

. (3.69) 

(3.70) 

(3.71) 

and zc stands either for 2 or ZG 
9 which are defined in Eqs. (3.16) and (3.17), 

respectively. Therefore we have 

1 0; c = 0 Y (3.72) 

where y n ab are the elements of the 2x 2 anomalous dimension matrix and are 

defined by 

Equations (3.61) and (3.63) are generalized to the singlet case as follows: 

<cjJJlc>= 1 C”,O;, 
n,b 7 , 

(3.73) 

(3.74) 

and 
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C B(g)& - *y,“(g) 1 r: ($0; c = 0 . 
b Y (3.75) 

Therefore, combining Eqs. (3.72) and (3.75) we finally obtain 

. (3.76) 

Equations (3.66) and (3.75) are the basic results of this Section. We shall 

discuss the solutions of these equations in Sections IV, VII and VIII, and now we turn 

to the calculation of the anomalous dimensions yis and y ib. 

E. Calculations of Anomalous Dimensions of Local Operators 

We first write the perturbative expansions of the matrix elements Ois NS 

and Oi,cy dropping p* independent terms, as follows 
Y 

O;sNS = Y + O(g4) 

and 

oEc = 6,,c+ Y 

Y (3.77) 

(3.78) 

where rLs and r” bc are calculable numbers and p* is the space-like momentum of 

the quark or gluon states (NS, C) between which the operators are sandwiched. 

Furthermore, the perturbative expansions of y:,-(g) and y:b(g) are 

2 
y;,(g) = yNS 16r2 Opn A- + O(g4) (3.79) 

and 
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2 

y:(g) = Yab 16a2 Oyn -a- + O(g4) . (3.80) 

Inserting Eqs. (3.77) through (3.80) into Eqs. (3.66) and (3.72) and choosing 4 

different combinations of a and c in Eq. (3.72), we obtain the following relations 

between the coefficients of In -p*/p* in Eqs. (3.77) and (3.78) and the anomalous 

dimensions of the operators 

y&J = r&+*y,i 

04 
yab = ‘ab n + *Yzsab a,b = $,G . 

(3.81) 

(3.82) 

Here yz stands for either yi or yl which are defined in Eqs. (3.40) and (3.43), 

respectively. 

It follows from (3.81) and (3.82) that in order to find yi;” and yz, we have 

to calculate the matrix elements of local operators sandwiched between quark and 

gluon states and pick out the coefficients of In -p*. For diagonal elements y 8 

yNS Oyn and yc”;;” we have to add, in addition, twice the anomalous dimensions of the 

quark and gluon fields which we have already calculated earlier. 

The diagrams which enter the calculation of yiGn or yikn are shown in Fig. 8. 

The diagrams which enter the calculation of the whole anomalous dimension matrix 

in order g2 are shown in Fig. 10. The virtuai gluon corrections on the external lines 

need not be calculated if 2y,z or 2~: is added explicitly as in Eqs. (3.81) and (3.82). 

On the other hand, if these diagrams are included in the calculations, the 

anomalous dimensions y ’ 
$ 

and yl should be dropped in Eqs. (3.81) and (3.82). 

In order to evaluate the diagrams of Figs. 8 and 10 we have to extend the list 

of Feynman rules of Fig. 4 by the rules for the vertices “x” which represent 

operator insertions into a two-point function. Simple rules for the vertices in 
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question have been found by (Gross and Wilczek, 1974) and are shown in Fig. 9. The 

A ~ appearing there is an arbitrary four vector with the property 

A2 = 0 . (3.83) 

The derivation of these rules can be found in the appendix of the paper by Gross 

and Wil czek. Additional rules necessary for the calculation of the anomalous 

dimensions in order g4 can be found in the paper by (Floratos, Ross and Sachrajda, 

1979). Here we shall only indicate how to reproduce formula (2.79a) for y 04 
w’ 

We begin with the diagram of Fig. 8b. We work in the Feynman gaugeF24 and ob- 

tain first 

Ib = hs dDk Y, lG& Y, 

(2tr)D (k*)2k - p)* 
(A k)“-1 

h&2)1* w = (*ldD (k *)*(k _ p)* (Ak)“-’ (3.84) 

where we have used formula (A.20) to- reduce the Dirac algebra in D dimensions 

and we have put all group and i factors in one symbol h. Now as the reader may 

convince herself (himself), if we are interested only in the coefficients of In p*, we 

can put c = 0 at all places where this substitution does not lead to a singularity. 

From this it follows (see below) that, equivalently, anomalous dimensions can be 

found by calculating the coefficients of the divergent parts l/c. On the other 

hand, if we are interested in the calculations of the so-called constant pieces (e.g. 

1 + In ~JT - yE in Eq. 3.12) we have to keep all E factors different from zero until 

the calculation is finished. In particular the “1,’ in Eq. (3.12) comes from the 

product of c in (Eq. 3.8) and the divergence l/c in I’(&/*). 
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Using the formulae of Appendix A, Eqs. (3.11), (3.83) and h= -iC2(R) with 

C*(R) given by (3.6), we obtain 

2 2 
7 -InA 

P2 1 aCtA p)“-’ + const . (3.85) 

The factor (Ap)“-1 in Eq. (3.85) arises in the following way. After using the 

Feynman parametrization of Eq. (A.13) one makes a change from k to c: 

ii = k-p(l-x) 

where x is the Feynman parameter. Therefore one obtains 

(Ak)“-’ = (1 - X)nw'fAp)n" + (n - I)(1 - x)"'~~P)"'~& + . . . . (3.86) 

The terms which involve more than one factor Al; can be dropped in Eq. (3.86) 

because they lead after K integration to A* which is zero. An additional factor c\p 

in the second term in Eq. (3.86) is obtained after ‘k integration, when Eq. (3.86) is 

inserted into (3.84). 

Adding zeroes order contribution ( [ 1 ] & dp)“-1) to Iby and comparing the 

result with Eq. (3.78) and taking into account (3.81), we obtain the following 

contribution of diagram 8b to y 04 
Jnl,: 

4C+R) - Iii (3.87) 

Notice that result (3.87) could also be read off the coefficient of l/~. This is 

particularly useful in the calculation of two-loop anomalous dimensions as discussed 

in detail by (Floratos et al., 1977, 1979). 
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The diagrams 8a and 8c give the following contribution to y g : 

n 1 
8C2(R) 1 7 

j=* J 
(3.88) 

and when the result for 2y” = *C*(R) is added to Eqs. (3.87) and (3.88), 
9 

we obtain 

W 
y*9 

= 2C2(R) 1 - n& + 4 i c 
j=* 1 1 

(3.89) 

* 

which by Eq. (3.6) for C*(R) agrees with (2.79a). The calculation of the remaining 

elements of the anomalous dimension matrix proceeds in a similar way. 
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IV. Q* DEPENDENCE OF THE MOMENTS OF STRUCTURE FUNCTIONS 
IN ASYMPTOTICALLY FREE GAUGE THEORIES 

A. Preliminaries . 

In this section we shall find the Q* dependence of deep-inelastic structure 

functions as predicted by asymptotic freedom in the leading order. The basic 

formulae of this section (4.17, 4.18, 4.41) express the moments of structure 

functions in terms of unknown (Q’ independent) matrix elements of certain 

operators times their coefficient functions with explicit Q* dependence. In the 

next section we shall cast formulae (4.17, 4.18, 4.41) into the standard parton 

model expressions with Q* dependent quark distributions. The reason for a careful 

discussion of structure functions in terms of Wilson coefficient functions first 

rather than immediately in terms of parton distributions is that beyond the leading 

order the definition of parton distributions is not unambiguous and the language 

developed in this section is more appropriate. This section is slightly formal but we 

invite the reader to go through it carefully since the techniques presented here will 

be at the basis of Sections VII and VIII. 

As we saw in Section III, the basic tools necessary to study QCD implications 

for deep-inelastic scattering are the Wilson operator product expansion and the 

renormalization group equations. The operator product expansion allowed us to 

systematically identify the dominant contributions to the moments of the structure 

functions at large Q* and to express them in terms of a sum of products of 

(perturbatively) calculable coefficient functions and (by present methods) uncalcu- 

lable matrix elements of certain operators between hadronic states. The Q* 

dependence of the coefficient functions could then be found by means of 

renormalization group equations. Explicitly we have 

0 
dx x”-*FL(x, Q*) = 1 A;(p*)C’ 

i L,n($yg2) (4.1) 
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dx x”-*F2(x, Q*) q 1 A;(!J*)+ 
‘) 

(4.2) 
0 i 

and 

dx x n-1F3(x, Q*) q 
ANS (3)~“’ d 

0 
n 3,n( u2 y g2) (4.3) 

where the sum runs over spin n, twist 2 operators such as the fermion non-singlet 

operator Ois and the singlet fermion and gluon operators 0; and O& respectively. 

The A’,(u*), which are independent of Q*, are the reduced hadronic matrix 

elements of the operators in question. They are defined in Eq. (2.63). We have 

shown explicitly that A:( u2) depend on ? , the subtraction point (see discussion in 

Section III). Notice that to the moments of F3 only one type of operators 

contributes. This is explained in Section VI1.E. 
NS We would like to recall that in our notation On stands for any linear 

combination of non-singlet operators which differ from each other by X” in Eq. 

(3.55). Therefore as emphasized after Eq. (2.64) &is(u2) depend generally on the 

process and the structure function considered. This dependence is discussed in 

Appendix B. 

We shall now find the explicit Q* dependence of the coefficient functions 

C~,,(Q*/u*, g*) as given in the leading order of asymptotic freedom. To this end it 

is convenient to decompose any structure function into a sum of singlet and non- 

singlet contributions as follows 

Fk(x, Q*) = F;‘(x, Q*) + F;(x, Q*) k = L,2,3 . (4.4) 

Particular examples of such decomposition in the framework of the simple parton 

model are given in Section 1I.B. The moments of the functions FFS and FE are 

given as follows 
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dx xn-2 NS 
0 

Fk (x, Q*) = AfS(u2)CNS 2 k,n( p2?g2) k=L~2 

dx x 
0 

n-1F3(x, Q*) = A;‘(IJ*)C;‘~ 
Y 

(4.5) 

(4.6) 

and 

il 
0 

dx x”-*F;(x, Q*) = A;( u*)C; n 
Y k = 2,L . (4.7 

B. Non-Singlet Structure Functions 

The Q* dependence of CNS * * * is governed by the following kyn(Q h Y & ) 
renormalization group equations 

L- lJ 8% + B(g) & -Y\S(gJ]c~~n(~Yg2) = O (4.8) 

where FNs(g) is the anomalous dimension of the nonsinglet operator O\s and B(g) is 

the renormalization group function which governs the Q* dependence of the 

effective coupling constant 

. (4.9) 

Here t = In Q*/u* and g is the renormalized strong interaction coupling constant. 

The solution of Eq. (4.8) is given as follows 

To proceed further one has to calculate CNS kyntl, i*), Y is(g) and B (g) in perturbation 

theory. In the leading order it is enough to calculate one-loop contributions to 

Y\S(g,) and B(g’) using the methods of Section II, and take the zero loop (parton 

NS model) values for C ,, ,( 1, i*). Thus in the leading order we have 
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and 

B(g) = - 8, A?- 
16~r* 

I 

s 04 k = 2,3 
cp;l;n(l, g*) = NS 

7 (4.11) 

(4.12) 

(4.13) 
[ 0 k=L 

where 6ks are constants which depend on weak and electromagnetic charges (see 

(O),n Appendix B), and B. and yNs are given in Eqs. (2.49) and (2.71) respectively. 

Inserting Eqs. (4.11) to (4.13) into (4.10) and performing the integral we obtain 

k*(Q*) d”NS 

3 
k = 2,3 

= i2( P2) 

k=L 

where 

d” NS= 28 
0 

(4.14) 

(4.15) 

Now from Eqs. (4.9) and (4.12) we have 

i*(Q*) = 16r* . (4.16) 

where the scale parameter A is related to p and i*(p*) = g* by Eq. (2.51). 

Combining Eqs. (4.5), (4.6), (4.14) and (4.16) we finally obtain 
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-dis 

il 
0 

dx x”-*F;~(x, Q*) = 6 (i’s A;‘(Q;) , (4.17a) 

(4.18a) dx x 
0 

n-1F3(x, Q*) = 6 (ik~fiJS(Qj$ 
In 5 -dZXS 

[ I Q2 
In -2 

A2 

and Frs = 0. In order to unify notation we have put p2 = Qi in Eqs. (4.17a) and 

(4.18a). 

Equations (4.17a) and (4.18a) can be used directly in phenomenological 

applications. 6 (k) NS can be taken from Appendix B and An NstQ;) can be found from the 

data by measuring the moments of structure functions at Q2 = Qz. Once Af’(Qz) 

are known, Eqs. (4.17a) and (4.18a) give the moments of the structure functions at 

any (sufficiently large) value of Q* in terms of one free parameter A. 

The value of Qi in Eqs. (4.17a) and (4.18a) is arbitrary as required by the 

renormalization group and the predictions for the moments in question should be 

independent of it. However by picking out one particular value of Qz in order to 

determine Af’(Qz) one gives this value specific significance. For consistency one 

should find Af’(Qi) from the data by choosing various values of Qz and check 

whether expressions (4.17a) and (4.17b) with various values of Qi give results 

compatible with each other. In order to simplify this procedure and at the same 

time to impose the independence of the phenomenological fit of Q$ it is 

convenient to get rid of Qi by writing Eqs. (4.17a) and (4.18a) as follows 
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II dx x”-*F~~(x, Q*) q 6 ($AzS 
-d”Ns 

0 
(4.17b) 

and 

j- ’ dx xn-lF~s(X, QE) = 6 E$ A;S ln $ [ 1 0 
. (4.18b) 

Here ANS n are constants (independent of Qi) and are related to An NS(Qf$ by the 

following equation 

ANS(Q*) - ANS 

n o- n 
(4.19) 

Numerical values for d\S C&I be fowd i.11 Table 1. 

C. Singlet Structure Functions 

The Q2 dependence of C&,(Q*/u*, g*) and ~&.,(Q*/IJ*P g*) is governed bY 

the following two coupled renormalization group equations 

[ p&+8(g)&] ct,n($,g2) = 5 y$gJC~,n($,g2) M=W @JO) 

where y;(g) are the elements of the anomalous dimension matrix and 8 (g) is the 

same function as in Eq. (4.12). These equations are more complicated than Eq. (4.8) 

due to the mixing between singlet operators as we discussed in Section III. In other 

words under renormalization 0 4J 
transforms into a linear combination of 0 Q and OC 

and the same happens with OG. This mixing has a very intuitive interpretation 

which we shall present in Section V. 

In what follows it will be convenient to work with matrix notation and 

introduce the column vector 
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E,,n($2) = 
and the matrixFz5 

y”(g) = 1 . Y ;G(g) 

(4.21) 

(4.22) 

Then the solution of Eq. (4.20) can be written as follows 

zk,n ( 5 ) g’ ) = [ Tg exp .fiQ2, dg’@ ] zk,& ii*) . (4.23) 

The T ordering is necessary since [ T(g,), y (g,)] f 0 and is defined as follows 

Tg exp ,_” dg’$@ = 1 + I_gdg’& + Y-Y 9 J- gdg’ . (4.24) 
g g g 

%‘dgll.#$ -&+ + . . . 

To proceed further one has to calculate ck,,(l, i*) and T”(g) in perturbation 

theory. In the leading order it is enough to calculate one-loop contributions to 

e”(g) and take zero loop (parton model) values for dk,n(l, g*). Explicitly 

q”(g) = y -(Oh _gl_ 
161~~ 

(2) [ 1 “Q 

0 

9 (4.25) 

7 (4.26) 
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and 

EL .(I, g*, = 
0 

9 [ 1 0 
. (4.27) 

Notice that CG k,n(l, i*) vanish es to this order. This does not mean however that 

C~,n(Q2/u2, g*) is zero for Q2f 3 as one can check by inserting (4.26) into Eq. (4.23). 

In what follows it will be useful to choose the basis in which y +O),n is 

diagonal. We introduce the matrix 6 which diagonalizes y d”h by 

(4.28) 

where ht are the eigenvalues of yoyn and are given in Eq. (2.78). It should be 

remarked that the matrix ^v is not defined uniquely by Eq. (4.28). In fact any 

matrix fit which is related to ^v by 

G(“, “,) (4.29) 

where a and b are arbitrary real, finite numbers, satisfies Eq. (4.28). Of course the 

final expression for the moments of the singlet structure functions does noi depend 

on which a and b we take. Here we choose 

(Oh _ x n 
ywJ - 1 

J 1 

ydodf” 
0; -x:1 

(4.30) 

and consequently 
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(O),n 
c 

(O),n 

;I-’ = 
-w - Y$lJJ 

(4.31) 
(Oh 

- y$G 
K&n _ xn 

3JJI + 1 
The elements y . . (Oh 

11 
have been calculated by (Georgi and Politzer, 1974; Gross and 

WiIczek, 1974) and are given in Eq. (2.79). 

Notice next that if we introduce a row vector 

1 
we can rewrite Eq. (4.7) as follows F26 

il 
0 

dx x”-*FTx, Q*) = A&*)? 2,n(s9g2) 

where 

+ *^ ^-I’ 2 
= An(P Iv u C*,n i: ‘1 2’g 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

and 
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(4.36) 

Using Eq. (4.36) for Q* = p2 and taking into account Eqs. (4.26) and (4.31) we obtain 

(leading order) 

C;7nt’ 7 ii*) 

[ I c; $7 ii*) 
7 

= &2) l 9 [ 3 -1 
. (4.37) 

We next write 

6-1~k7n (5 7 g*) = 2-l [ Tg exp JiQ2, dgl$$$] b c‘1Ek7n(17 g*) l (4.38) 

The T ordering is irrelevant to the order considered and we first obtain using (4.111, 

(4.121, (4.16) and (4.28) 

G-1 g 
TgexP J- 9 9 dQ*) dF+$- 1 A u= 

.l 

In OL 
A2 

In J 
A2 

0 

-d” 
- 

0 

-d: 

(4.39) 

where 
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. (4.40) 

Combining Eqs. (4.34), (4.37)-(4.39) we finally obtain the generalization of Eq. 

(4.17a) 

SO1 
dx x”-*F;(x, Q*) = 6 (‘)A;(Q;) 

Q 

lnQI 
A2 Q2 

In 0 
A2 

lnQf 
A2 Q2 

In o 
A2 

and F[ = 0. Here we have put p2 = Qz and defined 

Eq. (4.18a) applies for F3. 

Eqs. (4.41) and (4.42) with ii given by (4.35) are very useful in relating 

the formal approach developed here to the intuitive approach of Section V. 

However, when the formal approach is used without any reference to the parton 

distributions, it is convenient to repeat the steps which led us in the non-singlet 

case from Eq. (4.17a) to Eq. (4.17b) and write 

-d; 

(4.41a) 

(4.42) 

dx x 
0 

“-*F;(x, Q*) = $)A; [ln$]-d’+ $?A: [ ins]“: 

where the constants (independent of Q:) AZ are related to Az(Q:) as follows 

Q2 -d; 
Az(Qz) = AX In o [ 1 A2 

(4.41b) 

. (4.43) 

Numerical values for d”+ can be found in Table 1. 
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Eq. (4.41b) can be used directly in phenomenological applications. 6(*) can be 
IJ 

taken from Appendix B. Then Eq. (4.41b) describes the QL evolution of the 

moments of F; in terms of two sets of unknown numbers AX and the scale 

parameter A. AZ and A are to be found by comparing Eq. (4.41b) with the data. 

As can be seen in Table 1 

d; > d_” +l 7 _ _ 4<n<14 

and 

d:>d_“+2 , _ n> 14 

In addition 

d” .., - - d&s 7 - n>4 

. 

. 

(4.44) 

(4.45) 

Therefore for n > 4 and for sufficiently large Q* the second term in Eq. (4.41) can 

be dropped and consequently the Q* dependence of the singlet structure function is 

essentially the same as that of the non-singlet structure functions. This could be 

spoiled by large values of AA but experimentally this is not the case. In formal 

terms Eq. (4.46) expresses the fact that the mixing of gluon and fermion operators 

of high spin n is very weak. We also observe that because of the inequality (4.44) 

the EL- corrections to the V’ term in Eq. (4.41) are for n > 4 as important as the 

leading order contribution to the ‘I+” term. We shall later discuss it in more detail. 
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V. Q* DEPENDENCE OF PARTON DISTRIBUTIONS 
IN THE LEADING ORDER 

The discussion of the Q* dependence of the structure functions as presented 

in Section IV was rather formal and it is useful to develop a more intuitive picture. 

In fact, this can be done at least in the leading order. The result is simple and was 

already announced in Section II: all well-known par-ton model expressions remain 

unchanged except that now parton distributions depend on Q*. Thus if we only find 

the Q2 dependence of parton distributions predicted by asymptotic freedom, we can 

study QCD effects in deep-inelastic scattering by means of the standard parton 

model formulae. The aim of this section is to present equations which determine 

the Q2 dependence of parton distributions, solve them and show that they are 

equivalent to the formalism developed in Section IV. 

A. Intuitive Picture and Integro-differential Equations 

We begin with the intuitive picture of (Kogut and Susskind, 1974). Imagine 

the photon, 2’ boson or a W boson to be a microscope by means of which we probe 

the inner structure of the proton or general1 y of a hadron. Increasing Q2 while 

holding x fixed is equivalent to increasing the power of the microscope or looking 

at shorter and shorter distances. By scanning the proton at fixed Q* and 0 < x < 1, - - 

we obtain the picture of the proton at this particular value of Q*. According to the 

simple parton model of Section ILB, the picture of the proton does not depend on 

how strong a microscope we use. The pictures at different values of Q* are the 

same. This is not the case in QCD. By increasing the power of our microscope 

from Q: to Q$ > Q:, we can resolve a quark with momentum fraction x into a 

quark with x’ < x and a gluon with x” = x - x1 as illustrated in Figure 3a. Similarly a 

gluon with momentum fraction x can be resolved into a quark-antiquark pair as 

illustrated in Fig. 3b. There exists also the process of Fig. 3c which can be 
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interpreted as resolving a gluon into a gluon pair. Since a gluon couples neither to 

y nor to Z” or W’, this does not happen directly. However, the existence of this 

process affects the probability of finding a quark in a gluon since a gluon can either 

fragment into a quark-antiquark pair or into a pair of gluons and the sum of these 

two probabilities (plus the probability that the gluon does not fragment at all) is 

just unity. In summary the picture of the proton or, equivalently parton 

distributions, depend on Q*. 

The Q* dependence is different for different parton distributions. Intuitively 

valence quarks can effectively only emit gluons. They cannot be produced 

effectively in the Fig. 3b process because this would lead to baryon number non- 

conservation. As a result, valence quarks lose their momentum in favor of gluons 

and consequently (through the process of Fig. 3b) in favor of the sea. In the simple 

language developed above, by increasing Q* we cannot find a valence quark in a 

gluon or in a sea quark but only in a valence quark itself. Of course this picture is 

oversimplified since it assumes one can make a clear distinction between valence 

and sea quarks as in Eqs. (2.12) and (2.13). 

The behavior of the sea distribution with increasing Q* is different. Here 

both processes (Figs. 3a and 3b) can contribute. On one hand, gluon bremsstrahlung 

leads to a shift of the sea distribution to smaller values of x. On the other hand the 

process of Fig. 3b increases the amount of sea at all (mostly at small) values of x. 

As we shall see below, because of the coexistence of the two processes instead of 

just one as in the case of valence quarks, the asymptotic freedom equations for the 

Q2 evolution of the sea distribution are more complicated than for the valence 

quark distribution. For the same reason also, equations for the Q2 development of 

the gluon distribution are rather complicated. In the formal language of the 

previous section the complex Q*-dependence of the gluon and sea distributions is 

due to the mixing between gluon and singlet fermion operators. On the other hand, 

the simple behavior of the valence quark distributions is due to the fact that the 
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corresponding non-singlet operators do not mix under renormalization with the 

singlet operators. 

It is obvious from the picture developed above that the Q* dependence of the 

parton distributions will be determined by the variation (with Q*) of the probability 

of finding a parton i inside the parent parton j with the fraction of the parent 

momentum, z = x./x.. 
1 1 

Adopting the notation of (Altarelli and Parisi, 1977) we write the variation of 

the probability in question as 

a&Q*) 
- ‘ijt’) 2lT (5.1) 

where cr,(Q’) = -e and i,j stand for q and G. Then the equations which 

determine the Q* dependence of the parton distributions are given as follows 

d’+‘(x, t) = 
dt ag i,if V(y7 t)Pqq$) (5.2) 

dqi(x7 t, 
dt = $@ Jxl 9 [qi(Y, t)Pqq(F) + G(y7 t)PqG(;)] i = l,...f (5.3) 

dG(x, t) = 
dt 9 I,‘$ [I 0’7 t)PGq(;) + G(y, t)pGG+] 

Here t = In Q*ip*, V(x, t) is the valence quark distribution and 

(5.4) 

ac, t) ’ ~ tqi(‘7 t, + 4i(x7 t)) 
i 
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where the sum is over all flavors. The equation for ni(x7 t) is obtained from (5.2) by 

replacing qi(X, t> by yi(x7 t). From Eq. (5.3) it is a trivial matter to obtain Eqs. 

(2.52) and (2.53) of Section II. 

Equations (5.2)-(5.4) have been obtained in QCD by (Altarelli and Parisi, 1977) 

and (Dokshitser, Dyakonov and Troyan, 1978). Similar equations in the context of 

other theories have been discussed previously by (Gribov and Lipatov, 1972) and by 

(Kogut and Susskind, 1974). The structure of Eqs. (5.2)-(5.4) is easy to understand 

in terms of the intuitive picture discussed above. The quark distribution at the 

value x is determined by the quark (gluon) distribution in the range x c y < 1 and - - 

the probability for the q(y)(G(y)) + q(x) transition which is given by 

pqq(x/q)(PqG(x/y)). Similar comments apply to Eq. (5.4). 

Notice that the functions P qq’ ‘qG and ‘Gq do not depend on flavor. 

Strictly speaking this is only true for massless quarks. 

The “splitting” functions Pij(z) can be calculated 

vertices of Fig. 3. We refer the reader to the paper by 

in QCD by considering the 

(Altarelli and Parisi, 1977) 

for details. The result of this calculation is summarized in Eqs. (2.56)-(2.59) of 

Section II. 

Here we shall only discuss certain properties of Pij(z). To this end it is 

useful, following (Dokshitser, D’Yakonov and Troyan, 1978), to factor out group 

theory factors from Pij(z) and introduce the functions Vij(z) as follows 

Pqq(z) ‘, v z;l 3 w (z) (5.5) 

(5.6) pq&) = Vq&d 
pGqtz) = ; vGqtd (5.7) 
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PG&) z =< 1 3 vG&) (5.8) 

The functions Pij(Z) and Vij(z) satisfy certain relations and sum rules which we shall 

list now 

i) Charge conservation 

J+ ’ di Pqq(z) = 0 
0 

ii) Total momentum conservation 

j- ’ dz z [ Pqq(z) + PCq(z) ] = 0 
0 

J ’ dz z [2fPqG(z) + PCC(z)] = 0 
0 

. 

iii) Momentum conservation at the vertices of Fig. 3 

vqqtd q v,,t 1 - d 

vq&) = vqc(l - d 
VGG(z) = VCC(1 - Z) 

(5.9) 

(5.10) 

(5.11) 

The relations above are obvious. There exist in addition two other relations 

(Dokshitser, 1977) which are very interesting although not completely clear: 
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iv) The crossing relation 
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vq&) = z vGqt;) 

v) Quark-gluon symmetry 

vqqtd + vGq(d = vq&) + V,-G(Z) 

(5.12) 

The crossing relation (5.12) leads to the well-known relation between the deep- 

inelastic and e+e- structure functions (Drell, Levy and Yan, 1969; Gribov and 

Lipatov, 1972; Lipatov, 1975; Bukhvostov, Lipatov and Popov, 1975). Equation 

(5.13) could be interpreted as the equality of total probabilities for finding quark 

and gluon in a quark, and quark and gluon in a gluon. It is possible, however, that 

the relation (5.13) is just accidental. 

The important consequence of relations (5.9)-(5.13) is that it is enough to 

know one function Pii in order to determine the remaining three splitting 

functions. As we shall see below this implies that in order to find the whole one- 

loop anomalous dimension matrix as given by Eq. (2.79) it is enough to calculate 

only one of its elements!! This does not turn out to be true for the two-loop 

anomalous dimension matrix (see Section VIII). 

8. Asymptotic Freedom Equations for the Moments 
of Parton Distributions 

Here we shall show that the integro-differential equations (2.52)-(2.54) are 

equivalent to the equations for the moments of parton distributions as given by Eqs. 

(2.84)-(2.86). 

We first quote the well-known convolution theorem for Mellin transforms 

which says that if 

(5.13) 
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*‘d Hltx) = J, -f H2ty)H3(;) (5.14) 

where Hi(x) are some functions, then 

where 

M;) = j- ’ dx x”-IHi 
0 

i = 1,2,3 . (5.16) 

(5.15) 

We next notice (Altarelli and Parisi, 1977) the relations between the moments 

of the splitting functions P..(z) and the elements of the anomalous dimension 
11 

matrix Toyn (2.79) 

dz z 
Yg 

0 
n-lPqq(z) = - 4 

il dz zn-’ 
Y$$ 

0 
pq&) = - 8f 

I1 dz z 
0 

n-lPGq(Z) 
Y $ 

= - 4 

(5.17) 

(5.18) 

(5.19) 

and 

dz z n-lpGG(,) = -$ . (5.20) 
0 

Conventionally we have kept different notations for the indices of Pij functions and 

the indices of the elements of the anomalous dimension matrix. 8 in the formal 

approach stands for q in the intuitive approach. G is the same in both approaches. 
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The one-to-one correspondence between diagrams needed for the calculation of y 07n and the vertices needed for a similar calculation of the P.. functions is 
11 

illustrated in Fig. 10. 

Finally recalling that in the one-loop approximation to the 8 function 

a(Q’)= Im2 

B,ln e 
A2 

we can write 

8 2nd od 
--=2az 
dQ*) dt 

where 

(5.21) 

(5.22) 

(5.23) 

with Q: being some reference value of Q*. 

Applying the convolution theorem to Eqs. (2.52)-(2.54) and using Eqs. (5.17- 

5.20) and (5.22) we obtain differential equations for the moments of parton 

distributions which can be trivially integrated to give the promised Eqs. (2.84)- 

(2.86). 

C. Equivalence of the Intuitive and the Formal Approach 

In Section V.B we have demonstrated how the moment Eqs. (*.84)-(2.86) can 

be obtained from the integro-differential Eqs. (2.52)-(2.54). Here we shall show 

that Eqs. (2.84)-(2.86) can also be derived from the formal approach of Section IV. 
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As we have discussed in Section II.B, any parton model formula for an 

arbitrary structure function can be written as a sum of singlet (C(x)) and non- 

singlet (A(x)) combinations of quark distributions weighted by the appropriate weak 

and electromagnetic charges. The latter are represented in the formal approach by 

the constants cS(~) and c$$. Therefore writing generally 
4 

NS F2 (2) (x, Q2) = tiNSxA(x, Q2) 

and inserting it into Eq. (4.17a), we obtain 

< A(Q2)>, E j- 
1 

0 
dx x”‘1A (X, Q2) = Af’(Qz) 

and consequently 

ANS(Q2) q <A(Q2) ’ 
n 0 0 n 

lnQ1 
A2 [ 1 Q2 

-In 0 
A2 

. 

Therefore Eq. (5.25) is clearly identical to Eq. (2.84). Thus the matrix elements of 

local operators normalized at p2 Z Qz are interpreted as the moments of quark 

distributions at Q2 = Qz. The relation (5.26) between moments of quark 

distributions and the matrix elements of local operators has been anticipated a long 

time ago in the context of the parton model and light cone algebra (Jaffe, 1972). 

The case of singlet structure functions is slightly more complicated. Writing 

(5.24) 

(5.25) 

(5.26) 
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FS(x Q’) = 6(21x ax, Q2) 2 ’ ‘SI 
(5.27) 

and inserting it into Eq. (4.41a) we obtain first 

<c (Q2) >n z I’dx xn-’ 
0 

C(x, Q2) = A;(Q;) 

where by Eqs. (4.301, (4.35) and (4.42) 

and 

-d” 

l- + Am; 

A-(Q2) = A’(Q’h n 0 n o n + Az(Q& 

A+(Q2) = A$(Q2)(1 - CL n 0 n 0 n ) - AG(Q2& n 0 n . 

The parameters on and &,, are defined in Eq. (2.87). It follows from Eqs. (5.28) 

to (5.30) that 

A ‘(Q2) = <C(Q2) > n 0 0 n 

Therefore if we take 

AG(Q2) = <G(Q2) > n 0 0 n 

the formal Eq. (5.28) is identical to the moment Eq. (2=85). 

. 

1 
-d” + 

(5.28) 

(5.29) 

(5.30) 

(5.31) 

(5.32) 
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As pointed out by (Floratos, Ross and Sachrajda, 1979) Eq. (2.86) for the 

moments <G(Q2) >n can be directly obtained from Eq. (2.85). To this end we find 

<c(Qt)>, from Eq. (2.85) and make the relabelling, Qz * Q2, with the result 

d;(Q’b, = 
dQ2bn [ (1 - cc,)exp[d~C ]+ c1 n exp [d!g ] 1 - <C(Q$ >n 

l (5.33; 
‘n C exp[d:SJ- exp[d_“: J] 

Using next Eq. (2.85) on the r.h.s. of Eq. (5.33), we are led to Eq. (2.86). 

D. Properties of Parton Distributions 

The Q2 dependence of parton distributions, as predicted by asymptotic 

freedom, can be obtained by integrating Eqs. (2.52)-(2.54) or equivalently (5.2)- 

(5.3). Before doing this we shall first list basic properties of the Q2 evolution of 

parton distributions. These properties can be obtained most directly from the 

moment Eqs. (2.84)-(2.86). 

a. The momentum fraction carried by valence quarks, < V >2, and <x >,, of the 

valence quark distribution decrease with increasing Q2. This is consistent with the 

intuitive picture developed in Section V.A. Explicitly from Eqs. (2.49a), (2.84) and 

(2.79a) we have 

<V(Q2)>, = cV(Qz) >2 exp -&p 1 

and 

<x(Q2) > = <x(Qt) >exp -~&zp 1 

(5.34) 

(5.3 5) 
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where g is given by Eq. (5.23) and u((Q2) > is defined as follows 

ac(Q2) > f 
< V(Q2) ‘3 

< V(Q2) ‘2 
. (5.36) 

Notice that the rate of decrease of <V(Q2) >2 and of <x>,, increases with the 

number of flavors, which is not difficult to understand in the intuitive picture of 

Section V.A. 

b. The momentum fraction carried by gluons, <G >2and sea, <S >2, increase 

with increasing Q2. Since energy-momentum is conserved the momentum lost by 

valence quarks must be carried by gluons and sea quarks. In the Altarelli-Parisi 

Eqs. (5.2)-(5.3) energy-momentum conservation is ensured by the sum rules (5.10) 

which by Eqs. (5.17)-(5.20) are quivalent to 

o,(2) 
?J+ 

O,(2) = 0 
+YG$ 

0,m 
YGG 

O,(2) = 0 

+ y~G 

and consequently we have by Eq. (2.78) 

. 

(5.37) 

(5.38) 

(5.39) 

In more formal terms this just expresses the fact that the anomalous dimension of 

the energy-momentum tensor is zero. In Eqs. (5.37-5.39) “(2)” stands for n = 2. 

From Eqs. (2.87) and (2.79) we have for f flavors 

o2 =g, = 3f 
16 + 3f (5.40) 
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and 

and using (2.85) and (2.86), we verify momentum conservation 

<EtQ2)>, + <G(Q2) >2 = <C(Q;b 2 + <G(Q2) > 0 2 . 

(5.41) 

(5.42) 

Normalizing the total momentum of the hadron to 1 we obtain the following 

asymptotic predictions 

cGtQ 

2 16 
16+3f 

(5.43) 

(5.44) 

Because <V( ,cj, >2 = 0 we also have cC(=)>~ = <S(W)>~. For instance, for f = 4, 

asymptotically 43% of the proton (or other target) momentum will be carried by 

the sea and the remaining 57% by gluons. For f = 6 asymptotically 47% of 

momentum is carried by gluons and the remaining 53% by the sea. Notice that the 

asymptotic fraction of momentum carried by quarks increases with the number of 

flavors. Similarly the asymptotic fraction of momentum carried by gluons 

increases with the number of colors since for a gauge group SU(N) the 16 in Eqs. 

(5.40) and (5.41) is replaced by 2(N2 - 1). It should be remarked that these 

asymptotic predictions do not depend on the target. On the other hand, at 

moderate values of Q2 the momentum decomposition in the proton is, for instance, 

different from that in the pion. For a recent discussion of these questions we refer 

the reader to the paper by (Brodsky and Gunion, 1979). 
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7% 

the 

the 

At low values of Q2, roughly 45% of proton momentum is carried by gluons, 

by the sea and the remaining 48% by valence quarks. We expect therefore, on 

basis of predictions (5.43) and (5.44), a rapid increase with Q2 of the amount of 

sea, and a very slow (fast) increase (decrease) of the momentum carried by 

gluons (valence quarks). Thus, effectively, valence quarks lose their momentum 

almost entirely in favor of the sea. This is confirmed by explicit calculations. 

c. The average values of x, a >, of the sea and @on distributions decrease 

with increasing 2 Q . Although the momentum carried by the sea and gluons 

increases, their <x> values decrease as one can verify by means of Eqs. (2.84)- 

(2.86). This is obvious if we recall the intuitive picture at the beginning of this 

section or notice (Nachtmann, 1973) that di as given in Table 1, increase 

monotonically with n and are positive for n > 2. Similar comments apply to higher 

moments of o( >. Consequently we expect a decrease (as in the case of valence 

quarks) of the sea and gluon distributions at large values of x and increase (due to 

property b) of the distributions in question at small x values. This behavior has 

profound consequences for the Q2 development of the deep-inelastic structure 

functions. 
2 d. The flavor symmetry breaking in the sea decreases with increasing Q . 

Eq. (2.84) implies that 

C(Q2) >n - dtQ2) >n q c(Q;) >n - <TRQ2) > 
0 n] exp [- dLJS’] (5.45) 

and similarly for any pair of different quark distributions. Thus asymptotically all 

different quark distributions will be equal. Strictly speaking, Eq. (5.45) is only 

approximate because it does not take care of thresholds effects. Consequently, for 

the values of Q2 not much bigger than the (mass)’ of the relevant heavy quark, Eq. 

(5.45) overestimates the rate of approach to the flavor symmetry limit. 
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e. Generation of heavy quarks in the sea. It follows from Eq. (5.45) that if 

we set the charm contribution equal to zero at some value of Q2 = Q$ then for 

Q2 > Qz the distribution in question will be different from zero. This is due to the 

q;i creation of Fig. 3b. Of course due to neglect of mass effects, Eq. (5.45) 

overestimates the rate of generation of heavy quarks in the sea. 

f. The Q2 evolution of the sea distribution depends on the shape of the gluon 

distribution. Since the sea is produced in the process of Fig. 3b, its QL evolution 

depends on the shape of the gluon distribution. From the intuitive picture 

developed at the beginning of this section, it is clear that the steeper the gluon 

distribution, the stronger the increase of the sea at small values of x. Similarly a 

broad gluon distribution would lead to a non-negligible generation of sea quarks at 

intermediate values of x, say x z 0.3. Since the shape of the gluon distribution is 

rather poorly determined experimentally, in practical applications 

of the gluon distribution are very often kept free and are varied to 

to the data. Of course this freedom is limited to one value of QL 

the parameters 

get the best fit 

= Qi and to the 

moments n > 2, since the momentum carried by gluons is known due to momentum 

conservation (Eq. 5.42) once the momentum carried by quarks is determined. 

This completes the listing of the main properties of the Q2 evolution of 

parton distributions as predicted by asymptotic freedom. We shall see below that 

the knowledge of these properties greatly simplifies the discussion of QCD effects 

in deep-inelastic scattering. 

So far our discussion was rather qualitative. Choosing certain quark and 

gluon distributions at Q = Qz we can either integrate numerically equations (2.52)- 

(2.54) or invert numerically moment Eqs. (2.84)-(2.86) to find the distributions in 

question for Q2 f Qi. The result of such a calculation is presented in Fig. 11. All 

the properties discussed above are clearly seen. 
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E. Approximate Solutions of Asymptotic Freedom Equations 

For practical applications it is often convenient to have analytic expressions 

for Q2 dependent parton distributions which to a good accuracy represent the 

numerical solutions of Eqs. (2.52)-(2.54) or Eqs. (2.84)-(2.86). We shall here present 

the method for obtaining such analytic expressions proposed by (But-as, 1977; But-as 

and Gaemers, 1978). We shall also refer to other methods which can be found in 

the literature. 

Let us parametrize the solutions to Eqs. (2.52)-(2.54) or to Eqs. (2.84)-(2.86) 

by analytic expressions as follows: 

xV(x, Q2) = 3 fl,O 30 

M-I lts~, 1 + n2(s0 ’ 
(1 - x1 

for valence quark distribution, 

rip 
xS(x, Q2) = A$)(1 - x) 

for any sea distribution, and 

n Gta 
XG(X, Q2) = AGOt - XI 

(5.46) 

(5.47) 

(5.48) 

for the gluon distribution. 

Here s is given by Eq. (5.23) and B(n ,@, 1 + n2@) is Euler’s beta function. 

Its appearance is necessary if we want to satisfy the known sum rule 

.f ’ dx V(x, Q2) = 3 
0 

(5.49) 
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Notice that the parametrizations in Eqs. (5.46)-(5.48) are simple generalizations of 

the standard parametrizations used in the simple parton model (e.g. Field and 

Feynman, 1977; Barger and Phillips, 1974). The functions n im and Ai@ can be 

found as follows. At some Q2 = Qz or equivalently ? = 0, ni(0) and Ai are taken 

from the data. This allows us to calculate the moments < V(Qi)> n, <C (Qi)sn, 

< G(Qz)>, and consequently by Eqs. (2.84)-(2.86) we obtain < V(Q2)>r,, <C (Q2) >n and 

<G(Q2)>n for any (not too small) value of Q2 for which the equations in question 

apply. The functions n ,(a and n 2@ which describe the evolution of V(x, Q2) are 

then found by assuming 

‘lie = rli(O) + rli's i= 1,2 (5.50) 

and determing the constant slopes n il by fitting the moments of the analytic 

expression (5.46) to the asymptotic freedom prediction for < V(Q2b n which we have 

just obtained. One obtains for instance (for four flavors, f = 4) 

q ,@ = 0.70 - 0.176: 

q2(‘i) = 2.60 + 0.8s (5.51) 

where the input values 0.7 and 2.6 correspond to Qz q 1.8 GeV2 and have been 

chosen on the basis of SLAC data (Riordan et al., 1975; Bodek et al., 1979). The 

formula (5.46) with qi(Q2) given by (5.51) is a good representation of the 

asymptotic freedom Eq. (2.84) for 0.02 2 x 2 0.8 and 0 2 3 2 1.6. This range of S is 

larger than that explored by present experiments and experiments to be performed 

in the near future. 
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Similar analytic expressions can be found for dv(x, Q2) and uv(x, Q2) 

separately. One obtains for instance 

x$,(x, Q2) = 1 B( n,(S), 1 + n4(9) (5.52) 

where (for f = 4) 

TJ,@ = 0.85 - 0.24; 

n40 = 3.35 + 0.816s . (5.53) 

The input values 0.85 and 3.35 again correspond to Qi = 1.8 GeV2 and have been 

chosen on the basis of SLAC data. As we shall see in Section VI parametritations 

(5.46) and (5.53) fit well the data. Needless to say the method just outlined can be 

easily generalized, if required by the data at Qi, to any linear combination such as 

lAixni(l - x)n j. 
i,i 

The method just discussed is less powerful in reproducing the Q2 dependence 

of the sea and gluon distributions. This is due to the fact that the corresponding 

asymptotic freedom Eqs. (2.85-2.86) are very complicated. However, for a limited 

range of x,0.02 < x c 0.3 and 0 es c 1.6, it is enough to use the moments n - - -- = 2 and 

n = 3 of Eqs. (2.85) and (2.86) in order to find xS(x, Q2) and xG(x, Q2). For 

instance 

As@ = <s(Q2)> 2(&s-l) (5.54) 

(5.5 5) Tl,o = -A- - 2 cx > S 
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where 

<x> = 
<S(Q2) >3 

S tStQ2) >2 
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(5.56) 

and B(Q2) >2 and < S(Q2) > 3 are given by Eqs. (2.85). A similar formula exists for 

gluon distirbution which, however, turns out to be only a fair representation of 

asymptotic freedom due to a very rapid increase with QL of the gluon distribution 

at very small values of x, as predicted by Eq. (2.86). This rapid increase cannot be 

reproduced well by a simple formula like (5.48). Fortunately in the leading order 

for deep-inelastic processes one has to deal only with valence quark distributions 

and sea distributions. In addition, for x > 0.3 where the formula (5.47) is not 

applicable, the sea distribution is very small, and all deep-inelastic formulae are 

governed for this range of x by the valence quark distribution. Therefore the 

method just outlined is useful for deep-inelastic phenomenology. For further 

details we refer the reader to (Buras and Gaemers, 1978). 

For applications to other than deep-inelastic processes, as for instance the 

Drell-Y an process, one needs asymptotic freedom expressions for the sea 

distributions which are valid for x > 0.3. Such expressions turn out to be very 

complicated. They can be found in a paper by (Owens and Reya, 1978). 

There exist in the literature other methods for obtaining analytic expressions 

for the Q2-dependent parton distributions (Gliick and Reya, lP77b; Parisi and 

Sourlas, 1979; De Grand, 1979), which the interested reader may consult. Simple 

numerical inversion methods can be found in the papers by (Fox, 1977; Yndurain, 

1978; Martin, 1978; Furmanski and Pokorski, 1979b). The first inversion of the 

moment equations for nonsinglet structure functions by means of Mellin transform 

techniques is due to (Parisi, 1973; Gross, 1974; and De Rujula et al., 1974). First 

numerical integration of integro-differential Eqs. (2.52-2.54) has been done by 

(Cabibbo and Petronzio, 1978). 
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VI. SHORT REVIEW OF ASYMPTOTIC FREEDOM PHENOMENOLOGY 

Using the procedure of Section 1I.E modified appropriately by the mass 

corrections of Section 1I.D it is a straightforward matter to obtain asymptotic 

freedom predictions for various quantities of interest and to confront them with 

the experimental data. 

There have been many phenomenological papers in the recent past, and it is 

not a purpose of this section either to review them in detail or to present the best 

comparison of asymptotic freedom with the data. Instead we shall try to present 

the pattern of scaling violations and its size as predicted by QCD and as seen in the 

data. We shall do this quite systematically. For each quantity we shall first give 

qualitative predictions based on the properties of parton distributions which we 

have listed in Section V.D. We shall then give quantitative estimates based on the 

procedure of Section ILE, and we shall subsequently confront them with the 

existing data. In all cases we shall refer to various papers where details on the 

experimental data and their detailed comparison with asymptotic freedom 

predictions can be found. The analysis of this Section is based on leading order 

predictions only. F27 

A. Electroproduction and Muon Scattering 

1. Structure functions 

According to asymptotic freedom, with increasing Q2 one expects a decrease 

of the structure functions at large values of x and an increase at small values of x. 

The increase at small x values is due to the sea component, whereas the decrease 

at large values of x is caused mainly by the decrease of the valence component. 

This qualitative behavior is certainly consistent with the ep, pp, ed and uFe data 

(Watanabe et al., 1975; Riordan et al., 1975;Taylor, lY75; Atwood et-al., 1976; Anderson 

et al., 1977; Gordon et al., 1979; Bodek et al., 1979). These data show a definite decrease 
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of the structure function F2(x, Q2) for x > 0.25 and a Q2-independent behavior for 

0.15 < x < 0.25. For x < 0.15 the data for ep and ed scattering are poor and nothing 

definite can be said. The scaling violations in question increase with increasing x in 

accordance with the increase of the anomalous dimensions with increasing n. 

Asymptotic freedom fits, with or without mass effects, give good agreement with 

the data above. The parameter A is found to be in the range 0.3 c A -C 0.5 GeV. 

The details of such asymptotic freedom fits can be found in the papers by 

(Parisi and Petronzio, 1976; De Rujula, Georgi and Politzer, 1977a; Cl&k and Reya, 

1977a; Buras and Gaemers, 1978; Fox, 1977; Tung, 1978; Kogut and Shigimitsu, 

1977a; Johnson and Tung, 1977a, b). We show a typical asymptotic freedom fit in 

Fig. 12. The best data for structure functions at small values of x come from pp 

scattering (Anderson et al., 1977; Gordan et al., 1979). F28 For x < 0.15, and 

especially for x < 0.10, a definite increase with Q2 of FgP is observed. As shown in 

Fig. 13, the agreement of asymptotic freedom with the data is again good with a 

value of A consistent with that obtained from ep and ed scattering. We should like 

to remark that the increase at small values of x is expected to be caused by the 

increase of both the non-charmed sea as well as of the charmed sea component of 

the proton. 

The data above extend over the range of Q2 up to 60 GeV2 with the majority 

of experimental points below Q2 = 30 GeV2. Recently results from a u Fe 

experiment have been reported for Q2 up to 150 GeV (Ball et al., 1979). The 

scaling violations observed in this experiment agree well with asymptotic freedom 

predictions for Q2 < 20 GeV2 but disagree with it for larger values of Q2. In fact a 

decrease of the structure functions for 0.15 < x < 0.25 and for Q2 < 20 GeV2 is 

followed by an increase for Q2 > 20 GeV2. Whether these data cause a problem for 
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QCD remains to be seen. The effect is much too strong to be explained by new 

flavor production with the conventional charge assignment. It is of great interest 

to see whether the new u-experiments at CERN and at Fermilab will confirm the 

finidng of Ball et al. 

2. Moment analysis 

Anderson, Matis and Myrianthopoulos (1978) have made a comparison of the 

asymptotic freedom predictions for the moments of F2(x, Q2) with the experimen- 

tally extracted Nachtmann moments as defined by Eq. (2,124). Their analysis 

includes ep, ed and up data. The agreement of QCD with the data is impressive as 

can be seen in Fig. 14. The preferred value of the parameter A turns out to be 

0.66 +, 0.08 GeV, a slightly higher value than that obtained from the direct analysis 

of the structure functions. 

B. v and7 Deep Inelastic Scattering (Charged Current) 

Asymptotic freedom predictions for v and v deep-inelastic scattering can be 

obtained by means of the parton model formulae of Section II and the Q2 dependent 

parton distributions of Section V. 

1. Total cross-sections 
3 In the simple parton model the total cross-sections ov /Ev and CJ /EC are 

independent of energy except for possible threshold effects due to heavy quark 
u v production. In addition o /o = v v l/3 in the absence of sea quarks and o /o :: 0.40 

if the sea carries 5%-10% of the momentum of the nucleon as observed at 

Gargamelle (E :: 5 GeV) (Eichten et al., 1973; Deden et al., 1975). In the presence 

of asymptotic freedom effects o v’ 5 
u v and also o /b depend on energy. This 

energy dependence arises as follows. With increasing energy, a larger range of Q2 

is explored and, consequently, the valence and sea contributions to any of the 

cross-sections are effectively decreased and increased, respectively. The sea 

contribution to v and T cross-sections is roughly the same except for the difference 
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in charm production. On the other hand, the valence quark contribution is roughly 3 

times larger in the v cross-section. Consequently in the range of energies explored 

by present experiments, the energy dependence of (3” is expected to be governed by 

the decrease of the valence quark distribution, i.e., ov /E is expected to fall 

(Hinchliffe and Llewellyn-Smith, 1977b) with increasing energy. For v scattering 

the decrease of the valence quark contribution is roughly compensated by the 

increase of the sea. Thus “J/E is expected to be roughly constant at moderate 

energies. At higher energies, where charm production is at full strength, a~ /E is 

expected to rise slowly. Asymptotically it should approach ov /E. In summary, in 

the range of energies explored by present experiments, one expects a decrease of 

o” /E and a constant behavior followed by an increase for “3/E. Consequently the 

ratio ~;/cr~ is expected to increase. These expectations (Al tarelli, Petronzio and 

Parisi, 1976; Barnett, Georgi and Politzer, 1976; Buras, 1977; Glijck and Reya, 

1977a; Barnett and Martin, 1977; Hinchliffe and Llewellyn-Smith, 197733; Buras and 

Gaemers, 1978; Barger and Phillips, 1978; Fox, 1978; Avilez et al., 1977; Graham et 

al., 1977; Roy et al., 1977) are confirmed by the recent high energy experiments 

BEBC (Bosseti et al., 19771, CALT (Barish et al., 1977b; 19781, Serpukhov 

(Asratyan, 1978) and CDHS (de Groot et al., 1979a) when combined with low energy 

data as is shown in Figs. 15 and 16. We should like to remark, however, that above 

E = 40 GeV the changes in the cross-sections are very weak both in the theory and 

experiment, and to a good approximation the total cross-sections in the range 

40 < E < 200 GeV can be represented by a simple parton model formula with Q2- 

independent quark distributions, with the amount of the sea (valence) larger 

(smaller) than that observed at Gargamelle. 

The very slow change of the total cross-sections with energy is easily 

understood. Integrating over x amounts to summing up the increasing and 

decreasing with Q2 parts of the structure functions which compensate partly each 
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other leading to a small ef feet. The same phenomenon happens in the case of c y > 

on which we now comment briefly. 

2. <y’ 

In the simple parton model for the strong interactions and for the structure of 

weak interactions given by the Weinberg-Saiam model the distributions 1 duv 

1 d% 
E dy and 

E 7 are, in the absence of the sea quarks in the nucleon, flat and fl (1 - Y)~, 

respectively. Consequently <yS = 0.5 and <y >y = 0.25. If the sea carries 5%-10% 

momentum of the nucleon as observed at Gargamelle the distributions 1Q 

1 d?J 
E -$ and 

-- 
E dy 

have additional small (1 - y)2 and small flat components respectively which 

lead to <y >L, = 0.48 and <y >; = 0.3. If strong interactions as described by QCD are 

switched on, the sea component increases and the valence component decreases 

with energy. Consequently <y $ and <yT are expected to decrease and increase 

with energy, respectively. These expectations are confirmed by the recent high en- 

ergy experiments, CITFR (Barish et al., 1977a. 1978) and CDHS (De Groot, 1979a) 

as shown in Fig. 17. The rate of change is, as in the case of total cross-sections, 

very slow. In particular the CDHS group hardly sees any dependence. At 

E = 200 GeV (Y ’ v " 0.46 and <y>i z 0.34. Asymptotically we expect 

<Y’ V = ‘y>T = 0.44. Therefore if nothing but asymptotic freedom effects are 

present at higher energies one should observe a detectable increase of ‘~‘3, but 

almost constant <y> . 
1 day 

These slow changes with energy of < Y>~ and <Y>~, as well 

lVd% -- 
as Of E dy and E dy - -, predicted by asymptotic freedom are very fortunate 

because they will not mask the changes in y distributions due to W boson 

propagator. The latter effect (for mW = 80 GeV) is much stronger in the range 

500 < E c lo4 GeV than asymptotic freedom effects. We refer the interested 

reader to a paper by Halprin (1978JF2’ where a detailed study of the W boson 

propagator effects in y distributions can be found. 

3. <x>, <xy>, cx” > 

More useful quantities to test asymptotic freedom ideas than those discussed 

in B-1 and 8.2 are the averages <x > and <xy>, or, more generally, the moments 
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<x”> = ; J dx x” g , (6.1) 

<xmyn> = is.r 
mn da 

dx dy x Y dxay . (6.2) 

On the basis of the properties of the Q2 dependence of parton distributions listed in 

Section V.D and the formulae of Section II.B, both c x” > and <xmyn > should 

decrease with increasing energy. As an example we show in Fig. 18 the data for 

<Q2/E > = 2M<xy > which exhibit the expected energy dependence. The solid curve 

in the figure corresponds to a typical asymptotic freedom fit with n = 0.5 GeV. 

The data are from GGM (Eichten et al., 1973), BEBC (Bosetti et al., 1977), FNAL 

(Berge et al., 1976), SKAT (Baranov et al., 1978) and CDHS (De Groot et al., 1979a) 

and IHEP-ITEP (Asratyan et al., 1978). 

4. ./ dx Fi(x, E) and I dx xnFi(x, Eh) 

If asymptotic freedom or any renormalizable field theory ideas are correct, 

then the structure functions Fi do not depend directly on the incoming energy E but 

on Q2. This is obvious if we recall the intuitive picture of Section V.A. Therefore 

it is not a very convenient way to test asymptotic freedom ideas by measuring the 

integrals J’ dxFi(x, E). Experimentally they are extracted by using simple parton 

model formulae and assuming factorization in x and y. This last assumption is not 

true in QCD. The only way to compare the integrals of the structure functions in 

question as presented for instance in the papers by (Bosetti et al., 1977; Barish et 

al., 1978) is to relate them to the total cross-sections 

latter using asymptotic freedom formulae as discussed 

is made in Fig. 19 where we have used the relations 

ov and -v and calculate the 

previously. Such an exercise 

+% 1,l F2(x, E)dx = 3TF ov E 
4G2M 

(6.3) 
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Jo:F3(x, E)dx = + o’; O3 
2G M 

. (6.4) 

The integral in Eq. (6.3) measures essentially the fraction of the proton 

momentum carried by quarks and antiquarks. This fraction decreases very slowly 

since some of the momentum is effectively transferred to gluons. The decrease of 

the integral in Eq. (6.4) is mainly due to the decrease of the valence component of 

the nucleon. Asymptotically the integral of F3 is expected to be zero. 

.vnore sensitive tests of asymptotic freedom can be made by measuring the 

moments 

1 
s dx X”Fi(X, Eh) 

0 
(6.5) 

where Eh is the hadronic energy which is related to Q2 by 

Q2 = 2xv = 2xM(Eh - M) = 2xMEh . (6.6) 

In order to calculate the Eh dependence of the moments in Eq. (6.5) in the 

framework of asymptotic freedom one computes first Fi(x, I$ from Fi(x, Q2) by 

using Eq. (6.6). Subsequently the moments of Eq. (6.5) are calculated by a 

straightforward integration. It should be however kept in mind that for finite fixed 

energy Eh the lower limit of integration corresponds to Q2 = 0 for which 

perturbative calculations do not make sense. If we take QZmin = 2 GeV2 to be the 

minimal value of Q2 for which perturbative calculations are reliable then for 

Eh = 5 GeV, 20 GeV and 200 GeV the corresponding minimal values of x are 0.10, 

0.025 and 0.0025. Therefore only for $1 > 20 GeV can we reliably estimate the 

n = 0 moment of Eq. (6.5) in perturbation theory. The situation is better for n > 0 
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because these moments receive only a very small contribution from very small x 

regions. In Fig. 20, which we took from the paper by (de Groot et al., 1979a), we 

show the average values 

x - .f ’ x F2(x, E,)dx/.f 
F2- 0 

’ F 
0 2 

(x, Eh)dX 

and 

:F =I 1 2 
3 0 

x F3(x, Eh)dx/ j- ’ xF3k, JQdx 
0 

(6.7) 

(6.8) 

as functions of 5-I . The solid curve is the asymptotic freedom prediction with 

A = 0.47 GeV. 

5. x distributions 

From the properties of parton distributions as discussed in Section V.D and 
1 1 do. the formulae of Section 1I.B it immediately follows that the distribution E 17 dx in 

both v and T processes should increase and decrease with energy at small and large 

x values, respectively. These trends are in agreement with the existing high energy 

data. We refer the interested reader to the paper by (Fox, 1978 ) where a detailed 

comparison of asymptotic freedom predictions with the experimentally measured x 

distributions has been made. Also very recent data for x distributions (Benvenuti et 

al., 1979) exhibit the expected pattern of scaling violations. The x distributions 

deserve certainly further experimental studies since among the quantities which 

directly depend on energy and not on Q2 the quantities in question are expected to 

show the largest asymptotic freedom effects. 
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6. v and-3 structure functions 

So far we have discussed only the energy dependence of various quantities 

which can be measured in v and 3 induced processes. We concluded that, except 

for the x distributions and the moments (6.51, the measurements of the energy 

dependence are not very sensitive tests of asymptotic freedom ideas. Certainly the 

best way to compare the theory with the data is to consider the structure functions 

as functions of Q2. The Q2 dependence of FzyV is expected to be similar to that of 

Fep i e 2’ l *  
they should increase at small values of x and decrease at large values of 

x. On the other hand, the Q* dependence of F3 should be similar to that of the 

valence quark distribution. These expectations are confirmed by the recent high 

energy data obtained at CERN (Bosseti et al., 1978; de Groot et al., 1979a, b). As 

an example we show in Fig. 21 the Q2 dependence of Fz as measured by de Groot 

et al. The solid lines correspond to an asymptotic freedom fit with A = 0.47 GeV. 

7. Moment analyses of BEBC and CDHS 

One of the predictions of QCD is the n dependence for the anomalous 

dimensions of various operators. This n dependence can be tested indirectly by 

comparing the scaling violations as predicted by the theory with the experimental 

data. Such a test is not ideal because one has to make assumptions about the 

structure functions or parton distributions (in particular about the gluon distribu- 

tion) at some value of Q2 = Q’, and for the whole range of x. Also there is one free 

parameter, A. It would be useful to have a direct way of experimentally 

“measuring” the n dependence of the anomalous dimensions in experiment. This is, 

in fact, possible for the non-singlet anomalous dimensions as has been suggested 

and measured by the BEBC group (Bosseti et al., 1978). Recently a similar analysis 

has also been carried out by the CDHS group (de Groot et al., 1979c). Consider the 

moments of the structure function F3 which in QCD are given as follows 



-120- FERMILAB-Pub-79/17-THY 

Mn(Q2) = M&Q;) 

Consequently it follows that 

Q‘ 
In 0 

- A2 

O,n 
yNS In Mn(Q2) = In Mn(Qz) - 28 In 

0 

. (6.9) 

. (6.10) 

Therefore, if we plot In M 
“1 

(Q2) for a given n = n1 vs. In M 
“2 

(Q2) with n2 f nl, we 

should obtain a straight line with a slope given by the ratio 

OJY 1 2 “1 

’ NS - nl(l+“l) 
+4l c 

.=2 J 
0,n2 = . (6.11) 

’ 
n2 

NS 2 ‘-iii +4 7 1 5- 
jC2 1 

Notice that this ratio is independent of the gauge group as well as the number of 

iYaolxs. f; Is &u indepedem of A. It should be remarked that formula (5.11) 

expresses the vector character of the gluons and is true in any theory in which 

strong interactions are mediated by vector particles. In the case of theories with 

scalar gluons the sums in Eq. (6.11) should be dropped (Christ, Hasslacher, and 

Mueller, 1972). The combined data from Gargamelle and BEBC (Bosetti et al., 

1978) and the CDHS data (de Groot et al., 1979c) exhibit straight lines for the plots 

in question as can be seen in Fig. 22. The extracted slopes are compared with the 

predictions of vector and scalar theories in Fig. 23. The following observations can 

be made on the basis of these results: 
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i) Gargamelle-BEBC results agree very well with the formula (6.11) and 

disagree with the predictions of the scalar theory (Ellis, 1978). 

ii) The ratios of the ordinary moments (Cornwall and Norton, 1969) extracted 

by the CDHS group favor the vector theory whereas the ratios for the Nachtmann 

moments lie al most exactly between predictions of vector and scalar gluon 

theories. 

iii) The predictions of the scalar theory are systematically below all the data 

We may therefore conclude that the results above give some support to the belief 

that the mediators of strong interactions are spin-l particles. Recently Abbott and 

Barnett (1979)F31 reanalyzed the data of BEBC and CDHS and investigated how the 

plots in Figs. 22 and 23 depend on the cuts in Q2 and how they could be effected 

by higher-twist contributions. Their analysis weakened somewhat the conclusion made 

above. We refer the reader to this interesting paper for details. 

It should be remarked that although the plots of Figs. 22 and 23 may help to 

distinguish between vector and scalar theories, only ratios of anomalous dimensions 

are “measured” in this way. By taking ratios, some of the predictions of the theory, 

namely the size of the anomalous dimensions, are lost. Furthermore, the anomalous 

dimensions of non-singlet operators which we discussed here represent only a part 

of the theory in which singlet operators are also present. Therefore to test the 

theory more critically and in particular to distinguish it from other vector theories, 

it is necessary to study the full QL evolution of structure functions with both 

singlet and non-singlet contributions taken into account, as we did in the previous 

subsections. Discussion of the predictions of other field theories will be presented 

below. 
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Finally we would like to comment on a paper by (Harari, 1979) who derived 

“bounds” on the slopes in Fig. 23 assuming that xF3(x, Q2) behaves as 

xF3(x, Q2) = 3 ’ 
al(Q2) 

(1 -x) 
a2(Q2) 

B(al(Q2), 1 + a2(Q2)) 
(6.12) 

where aI and a2(Q2) are slowly-varying functions of Q2, decreasing and 

increasing, respectively. B(al(Q2), 1 + a2(Q2)) is the Euler’s beta function needed 

to ensure the Gross-Llewellyn-Smith relation. The bounds obtained in this way are 

rather stringent, and the results of the CDHS group and the BEBC collaboration 

cover the entire range allowed by these bounds. Therefore, Harari concluded that 

the data in question cannot be considered as evidence for the validity of QCD. It 

should, however, be remembered that the form (6.12) is exactly the form of Eq. 

(5.46) which turned out to be a good representation of QCD. Furthermore, the 

assumption that the functional form of xF3(x, Q2) will not be changed with Q2 is a 

strong assumption which is approximately satisfied by QCD but will in general not be true 

in an arbitrary theory. In fact it is not difficult to violate Harari’s bounds by choosing 

arbitrarily the n-dependence of the anomalous dimensions yNs Oyn in Eqs. (6.9-6.11). 

Next, inverting Eq. (6.91, one finds that the functional form assumed at one value 

of Q2 cannot in. general be retained with varying Q2. For instance, scalar gluon 

theories violate Harari’s bounds. Therefore, al though Harari’s analysis is 

interesting in itself, we do not agree with Harari’s conclusion and think that the 

BEBC and CDHS data do give support to QCD. We agree however with him, as we 

stated above that a better test of the theory can be made by studying the full Q2- 

evolution of the structure functions or their moments. 
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8. Comments on neutral current processes 

In QCD, scaling violations are also expected in the neutral current processes 

(Barnett and Martin, 1977; Buras and Gaemers, 1977; Barger and Phillips, 1978; 

Hinchliffe and Llewellyn-Smith, 1977c). In particular, the well-known plot Rv vs. R; 

is expected to change with energy. The present data on neutral currents are, however, 

not precise enough to make any QCD analysis meaningful. 

C. Comments on Fixed Point Theories 

Until now our discussion of scaling violations concentrated on asymptotically 

free gauge theories. Here we shall comment on theories in which the effective 

coupling constant approaches for Q 2-+ QJ a constant value g* f 0 (so-called fixed 

point at which B(g*) = 0). If g* is small then we may hope to calculate predictions 

of these theories in perturbation theory in g*. It should be emphasized however 

that the structure of fixed point theories is not well known. In particular, we do 

not know whether a fixed point with a small value of g* exists. Therefore if we 

assume g* to be small, use perturbation theory and show that the result disagrees 

with the data, we still cannot claim that we have ruled out the theory in question. 

It could namely happen that g* was large in fact and the true prediction of the 

theory obtained by non-perturbative methods was consistent with the data. 

Nevertheless it is interesting to see what happens if perturbation theory is 

used. Since the ratios of anomalous dimensions in scalar gluon theories (obtained in 

perturbation theory) are systematically below BEBC and CDHS data, we shall 

discuss here only abelian vector theories. These theories have been studied 

extensively by (Gliick and Reya, 1976, 1977a, 1979) and we shall only recall the 

most important points of their analysis. 

For the moments of non-singlet structure functions we have 
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2 
MNS(n Y Q2) = MNS(n Q*)exp - s ‘In Q ’ 0 c) 

= M%, Q;) 
-I;iL’ 

where rlin is determined by its fixed point value 

y;;” = ‘4E L 
3 + ag 

*4 

j=2 1 
1 . 

(6.13) 

(6.14) 

The n dependence of yzs is exactly the same as in QCD. The Q2 dependence 

in Eq. (6.13) is different but as noticed first by (Tung, 1975; Llewellyn-Smith, 1975) if g* is 

properly chosen Eq. (6.13) can mimic the corresponding QCD prediction in the 

range of Q2 available in present experiments. In particular Reya (1979) and Abbott and 

Barnett (1979) find that abelian vector theories agree well with CDHS and BEBC data for 

the moments of F3 if g 
*2 

/161~~ z 0.04. Therefore if g* is small and the leading order formu- 

lae (6.13)-(6.14) are used, the fixed point vector gluon theories cannot be at present 

distinguished from QCD on the basis of scaling violations observed in non-singlet 

structure functions. It has been pointed out however by Gliick and Reya that such a 

distinction can be made on the basis of the singlet structure functions. They 

propose to look at the second moment of FzN(x, Q2), which in the parton language 

measures the fraction of the proton momentum carried by the quarks. In 

experiment the moment in question is roughly equal to 0.5 at low values of Q2 and 

decreases very slowly with increasing Q2. It turns out that only QCD and so-called 

“fixed point QCD” (FP-QCD, QCD with the vanishing triple gluon vertex) agree 

with this behavior. All other theories considered by Gliick and Reya predict an 

increase of the second moment with Q2 (as pointed out by Abbott and Barnett (1979)) 

higher twist effects could invalidate these results). 
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Gliick and Reya (1979) investigated also the full x and Q* dependence of 

F\:N(x, Q*) and concluded that further discrimination between QCD and the FP- 

QCD cannot be made on the basis of the present data on scaling violations. 

Once again we would like to emphasize that when judging these results one 

should keep in mind that the predictions of fixed point theories as discussed here 

cannot be treated on the same footing as the QCD predictions. The reason is that 

whereas we can believe in the results of perturbative calculations in QCD, there is 

no reason that such calculations are justified for fixed point theories. 

D. Critical Summary 

As we have seen in this Section, asymptotic freedom (leading order) 

predictions agree well with the scaling violations observed in ep, ed, up, v N and TN 

deep-inelastic scattering. We should, however, be very careful in judging these 

results. The reasons are as follows: 

a) The mass corrections, which enter any asymptotic freedom analysis, are, 

on the one hand, non-negligible at low values of Q* and, on the other hand, as 

discussed in Section II not completely understood. Presumably the problem of 

target mass corrections cannot be completely solved within perturbation theory. 

The effects of heavy quarks can however be discussed in the framework of 

perturbation theory except for the region close to various thresholds, where non- 

perturbative effects are probably important. Since the ultimate QCD predictions 

depend on the treatment of mass and threshold effects, further study of the effects 

in question is very desirable. One way to circumvent partially the problem of mass 

correction is to make QCD comparison with the data for (4x2m2/Q2) << 1, where 

at least target mass effects are expected to be small. 
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b) The effects of higher twist operators, which we have not included in our 

analysis, may turn out to be of some importance at low values of Q*:: 0 (5 GeV2) 

(for a recent analysis see Abbott and Barnett, 1979). 

c) There is the question whether the use of leading order predictions at low 

values of QL is justified in view of the existence of calculable higher order 

corrections. We shall try to answer this question in the next two Sections. 
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VII. HIGHER ORDER ASYMPTOTIC FREEDOM CORRECTIONS TO 
DEEP-INELASTIC SCATTERING (NON-SINGLET CASE) 

A. Preliminaries 

In the last three sections we have discussed leading order predictions of 

asymptotic freedom for deep-inelastic processes. We have seen that these 

predictions are in a good agreement with all experimental data with the value of 

the scale parameter fl in the range from 0.3 GeV to 0.7 GeV. However, at 

Q2 z few GeV* the leading asymptotic behavior cannot be the whole story and it is 

of interest and of importance to ask whether higher order corrections in the 

effective coupling constant g2(Q2) modify these results. In this and the next 

section we shall discuss these corrections in great detail. We shall see that these 

corrections are different for different structure functions and consequently various 

parton model relations and current algebra sum rules, which were true in the 

leading order, are no longer satisfied. The experimental verification of the 

violations of these sum rules is very important although a difficult task. 

There is still another reason why higher order calculations are important. 

This is the fact that without them the value of A cannot be extracted from 

experiment in a theoretically meaningful way (Bate, 1978). To see this consider 

the moments of a non-singlet structure function as given by the leading order 

expression and, to simplify the argument, take the appropriate roots 

*@O 
-O,n 

hn(Q2) 5 [ M,(Q*) 1 Y’s = ~,ln-$- . 
flLO 

(7.1) 

where An are Q*-independent numbers. If the experimentally measured moments 

are 
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42 
An In 0.49 
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(7.2) 

then (in units of GeV) 

A LO = 0.7 

Now let us introduce next to the leading order corrections to the leading order 

formula (7.1) and write it as 

+Q*) = A,ln g +R A2n l 
(7.3) 

If Rn = 6 An, where 8 is an n independent number, then we can rewrite (7.3) as 

Gn(Q2) = An In Q 
,: 

with 

Iv2 = A2em6 

(7.4) 

Now we have various options. We can work with Eq. (7.4) and say that we have 

absorbed all higher order corrections by redefining the parameter A. In that case 

A’ = ALO. We can also work with expression (7.3) but in this case 

(7.5) 

A2 = e6A2 LO (7.6) 
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In practice Rn is not proportional to $, but one can always redefine A (Bardeen, 

Buras, Duke, Muta, 1978) by using the equality 

inIn $+R 
2 

A* n 
= AnlnQ 

A2 I + [R,-&A,1 (7.7) 

The freedom in defining A, as discussed here, is related to the freedom which we 

have in defining the effective coupling constant g*(Q*) when solving renormali- 

zation group equations. (F or more details, see Section VI1.F.) All these examples 

show clearly that one cannot discuss numerical values of A in a theoretically 

meaningful way without calculating higher order corrections and without specifying 

the definition of the effective coupling constant. 

Once a definition of g*(Q*) is made and is used in calculations of higher order 

corrections in various processes it is possible to make a meaningful comparison of 

higher order corrections to various processes. We shall see that these corrections 

are generally different for different processes. This teaches us that it is in 

principle unjustified to use the same value of A in the leading order expressions for 

different processes. On the other hand, once higher order corrections are included 

in the analysis and g2(Q2) is properly defined in a universal way, it is justified to 

use the same value of A in different processes. We shall discuss all these questions 

in greater detail and with specific examples, but first we have to calculate the 

higer order corrections. As we shall see there are many subtle points related to 

higher order calculations which one does not encounter in the leading order. These 

are, for instance, various gauge dependences and renormalization prescription 

dependences of separate elements of the higher order formulae. We shall deal with 

all these questions in detail. 
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B. Wilson Coefficient Functions of Non-singlet Operators to Order g* 

We begin the discussion of higher order corrections with the non-singlet 

structure functions (e.g. F2 ep - F;“, F:p - FzP, F3, etc.) which we generally denote 

by FfiJ’(x, Q*). In Quantum Chromodynamics the moments of FFS(x, Q*) are given 

as follows 

1 
k = L,* (7.8) 

. (7.9) 

Here C~sn(Qzh* , g*> are the Wilson coefficient functions of the non-singlet 

operators and An NS(U2) are the corresponding reduced hadronic matrix elements. 

The ANSI s n are uncalculable by present methods and as discussed in the previous 

sections must be taken from experiment. The coefficient functions 

C;sn(Qz/ u*, g*) are, on the other hand, calculable in perturbation theory. They 

satisfy the renormalization group equations (4.8) which have the following solution 

= Cisn(l, g*)exp 
$Q*) Y;&‘) 

&.I *I dg’ TpT 1 (7.10) 

where Y is(g) is the anomalous dimension of the non-singlet operator O\s and 
-2 2 g (Q ) is the effective coupling constant. i*(Q*) satisfies the equation 

& - g@@ ; gtt = O) = g . (7.11) 



-131- FERMILAB-Pub-79/17-THY 

Here t = In Q*/u * and g is the renormalized strong interaction coupling constant. 

In order to find explicit expressions for the leading and next-to-the-leading 

contributions to Cr;fFn(Q2/p2, g*) we expand y is@, B @ and Ctsn(l, i*) in powers 

k&n ii* (l),n 
&@ = yNS 16-2 + ‘NS ? (7.12) 

? (7.13) 

and (through order g*) 

c;rn(l, i*, = 

k = 2,3 

k=L 

. (7.14) 

k Here 6NS are constants which depend on weak and electromagnetic charges. 

Inserting Eqs. (7.12)-(7.14) into Eq. (7.10)) expanding in i*(Q*) and inserting 

the result into Eqs. (7.8) and (7.9)) we obtain after putting u* = Q: 

d” 

f$%, Q*) = 6ks A:+Q:) 1 + 
I g*(Q*) - ji*(Q;, 1 

161~’ 
RNS 

R2tQ21 NS 

k,n I[ 3 g*(Q;) 

k = 2,3 

where 
(7.15) 
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0 
‘NS 

d”Ns = 28 ? 
0 

RNS NS 
k,n = Bk,n+ 

and g*(Q*) is to be calculated by means of Eq. (7.11) with the P function given by 

Eq. (7.13). For the longitudinal structure function we obtain 

(7.16) 

(7.17) 

hlNS(n Q*) = 6 L L ’ NsA;s(Q;) 
lnd 

A* 

Q2 
In 0 

A* 1 
-dFlS . (7.18a) 

Because the longitudinal structure function vanishes in the leading order it is 

sufficient to use here the leading order formula for g*(Q*) i.e. Eq. (2.50). 

In the phenomenological applications it is often convenient to insert into Eq. 

(7.15) the explicit expression for g*(Q*) which is given as follows 

1 Bl -- 
f33 

0 

lnln Q 
A’ 

ln2 2 
A* 

+o 1 

ln3 2 
8 

. (7.19) 

Here h has been arbitrarily chosen so that there are no further terms of order 

l/(ln* 4*/h*). Clearly this choice of A is not unique and one could use other 

definitions for h which lead to additional terms of order l/(ln* Q*/h*) in Eq. (7.19). 

In this review, however, we shall only use the functional form of g*(Q*) as given in 

Eq. (7.19). A, 1-1~ and $u*) are related to each other by Eq. (2.89). 

Inserting (7.19) into (7.15) we obtain the following generalization of the 

leading order formulae (4.17a) and (4.18a) 
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MNS(n Q*) = 6 k NS * k ’ NSAn (Qo) 

k = 2,3 

where 

5 R;yn(Q2) = R;sn - - y Oynln In Qz 
28* NS 

0 
A* 

lnd 
A* [ 1 Q2 

In o 
A* 

-dk5 

(7.20a) 

with RFSn given by Eq. (7.17). 
? 

The value of QE in Eq. (7.20a) is arbitrary as required by the renormalizaiton 

group equations and the predictions for MfiJ’(n, Q*) are independent of it. 

(7.21) 

Therefore it is convenient to get rid of Qi by writing Eq. (7.20a) as follows 

i 1 ‘lnQ 
f 

-dl& 
k = 2,3 (7.20b) 

Here A:’ are constants (independent of Qz), which are related to Ar’(Qz) by the 

following equation 

ANS(Q2) = KNs n 0 n I l + R~S,(Q~) 

2 
B, In Q, 

A* 

. (7.22) 

Notice that Eqs. (7.20b) and (7.22) are straightforward generalizations of the 

leading order formulae (4.17b), (4.18b) and (4.19). 

Similarly we can write (7.18a) as 
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MN% Q*) = 6 L ’ (7.18b) 

where A:’ is defined by Eq. (4.19). 

It should be remarked that theoretically A:’ q A:‘. This is because for 

sufficiently large values of Q*, for which higher order corrections are small, Eq. 

(7.20b) and the corresponding leading order formulae (4.17b) and (4.18b) should 

coincide. In phenomenological applications, however, n ANS and AZ’, being 

uncalculable in perturbation theory are regarded as free parameters and are found 

by fitting the formulae in question with the data. Since formulae (7.20b), (4.17b) 

and (4.18b) have different structures, fits to the same data will lead to different 

NS numerical values for An and $I:. Therefore, we use different notation for AfS 

and A:‘. 

We see that, in order to find the next to the leading order corrections, one 

has to calculate two loop contributions to y n NS(g) and 8(g) and one loop corrections 

to CFsn(l, g*,. Th e t 
’ 

wo-loop contribution to the 8 function, i.e., parameter 8 1, has been 

calculated by Caswell (1974) and Jones (1974) and is given for an SU(3jc gauge 

theory with f flavors by 

B, = 102~Yf . (7.23) 

It should be remarked that B, as well as y$t and B, are renormalization 

prescription-and gauge-independent. 

The parameters BNS k n for electromagnetic processes and V scattering have 
’ 

been calculated by Calvo (1977) and for electromagnetic processes by de Rujula, 

Georgi and Politzer (1977a). The results obtained in these two papers disagree with 
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each other. The reason for the disagreement between these two calculations 

is that they have been performed in two different renormalization schemes. Calvo 

has used renormalization on the mass shell whereas de Rujula, Georgi and Politzer 

made subtractions at p*=-u* (see Section III). In fact as has been pointed out by 

(Fl oratos, R oss and Sachrajda, NS 1977) the parameters Bk,n are renormalization 

prescription dependent. Of course the moments of the structure functions cannot 

depend on the renormalization schemes used, and it can be shown (see Section 

VI1.D) that the renormalization prescription dependence of the parameters Bysn is 
(l),n 

’ 
cancelled by that of the two-loop parameters yNs . In other words the quantity 

4 
l),n 

BNS NS 
k,n + ?r$- 

0 
(7.24) 

which enters the formula (7.17)) is renormalization prescription independent. This 

means that the calculations of higher order corrections can be performed in any 

renormalization scheme but care must be taken that both quantities are calculated 

in the same scheme. This implies that without doing explicit calculations one 

cannot a priori neglect any of the two quantities B ‘;i”, and YNS (l),?* B ’ o in any higher 

order formulae. The reason is that in some schemes the two-loop contributions are 
NS dominant in the sum (7.24) whereas in other schemes B n k are most important. ? 

The full calculation of the sum of Eq. (7.24) has been performed in the 
NS literature only in the ‘t Hooft’s minimal subtraction scheme. The parameters B k n have ’ 

been calculated by (Bardeen, Buras, Duke and Muta, 1978) and recalculated by 

(Floratos, Ross and Sachrajda, 1979). The latter authors have also calculated the 

two-loop anomalous dimensions y,, (‘),TFloratos, Ross and Sachrajda, 1977). 
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We shall now outline the procedure for the calculation of the parameters 

BNS k n and subsequently prove the renormalization prescription independence of the 

sun: in Eq. (7.24). 

C. Procedure for the Calculation of BFsn ’ 
We first notice that in order to find B’;i”, as defined in Eq. (7.14)) it is 

sufficient to calculate C trn(Q2/p2, g*) in perturbation theory to order g* and put 

Q* = p2. This is obvious from Eqs. (7.10) and (7.11). In order to calculate 

C;;n(Q2/v2, g*) in perturbation theory we proceed as follows. We write first the 

1.h.s. of Eq. (3.54) as 

T&Q*, v) = 1 + 
n x 

+d 1-I vT*,n (7.25) 

where p* is the target momentum squared and we have indicated on the r.h.s. of 

Eq. (7.25) that TL n, T2 n and T3 n will be calculated in perturbation theory. The 
? ’ ’ 

tensors e and d 
PV I.lV. 

are defined in Eqs. (2.2) and (2.3) respectively. Restricting 

the discussion to the non-singlet contributions, we obtain by comparing (3.54) and 

(7.25) the following relation for each n separately 

C;;$,g*) A;‘($,g’) k=L,2,3 . (7.26) 

We observe that in order to find CNS k,$Q h 9 g ) * * * we generally have to calculate 

both Tfl and ANS. We have mentioned before that the matrix elements of local 
’ n 

operators between hadronic states are incalculable in perturbation theory. 

Fortunately, the coefficient functions of operators do not depend on the states 
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between which the operators are sandwiched, and, therefore, in the problem under 

investigation we can choose any state for which perturbative calculations can be 

performed. Consequently, in Eq. (7.26) T’;i”, are to be found from the virtual ? 
Compton scattering off quarks and A:’ stands for the matrix element of the spin n 

non-singlet operator between quark states. In order to avoid mass singularities in 

what follows, we shall keep the external quarks at space-like momenta p* < 0. 

where 

Next we expand the elements of Eq. (7.26) in a perturbation series as follows 

ln d + A(,~),NS 
P2 I 

t 

1 k = 2,3 
hk = 

0 k=L 

(7.27) 

(7.28) 

(7.29) 

(7.30) 

and the coefficients of the logarithms are fixed by the renormalization group 

NS equations which C k n 
’ 

and A:’ have to satisfy (see Section III). In order to simplify 

k the notation we have dropped the overall factors 6 NS. 

Inserting Eqs. (7.27-7.29) into (7.26) and comparing the coefficients of g* we 

obtain 
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BNS k,n = 

(2),NS 
Tk,n 

_ A(*),NS 
n 

To 2 ,NS 
bn 

k = 2,3 

k=L 
. (7.31) 

(2) NS We shall comment on the details of the calculation of Tk n’ , A(2)?NS and n 
BNS 

9 
k n ’ in Section VI1.E and turn now to a discussion of the renormalization 

prescription dependence of BNS k n and of its CanCellath by the renormalization 9 
(l),n scheme dependence of the two-loop anomalous dimensions yNs . 

D. Renormalization Prescription Independence of 
Higher Order Corrections 

Here we follow the proof of (Floratos, Ross and Sachrajda, 1977). 

Consider two renormalization schemes a and b in which the matrix elements 

of the operator Ois calculated to order g* are normalized differently as follows 

(we drop the index NS) 

and 

Acp)( $,g*) = AZ [ I+-$ ($$$ln$ +rn)] . (7.33) 

(7.32) 

Here A: are the zero loop matrix elements which are obviously the same in both 

schemes. In scheme a, at p* = -u* the renormalized matrix element An (a) - 1s equal 

to the zero loop matrix element. This is a very common renormalization scheme. 

In scheme b we have 
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A;‘(-1, g*) = A0 n [l+srn] (7.34) 

where r n are non-zero numbers specific to a given renormalization scheme. In 

particular, ‘t Hooft’s minimal subtraction scheme (‘t Hooft, 1973) falls into the 

class of b schemes. 

Since T(*) k n are independent of renormalization scheme (the virtual .Compton 

amplitude is finite and no renormalization is required) we have from Eqs. (7.31)- 

(7.33) 
1 Bb) 

k,n - ‘n k = 2’3 
,(a) 

k,n = 
B(b) 

L,n k=L 

. (7.35) 

Thus B2,n and B3,, are renormalization prescription dependent, whereas BL n is 
’ 

independent of renormalization scheme. 

Recall next that 

o&n = Zion i = a,b (7.36) 

where Oopn * is the bare operator. From (7.32) and (7.33) we have therefore the 

following relation between the renormalization constants Za and Zb 

za = 

Since the anomalous dimension of the operator 0” is defined by 

. 

n 
Yi log ‘i 1 

Bare quantities fixed 
i = a,b 

(7.37) 

(7.38) 
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we obtain from (7.371, (7.38) and the definition of the f3 function, e.g. Eq. (3.37), 

the following relation between yi and yf: 

Y: = vf: + *rnSO L 
(16n21* 

or equivalently 

(l),n 
yb 

= y (1) 
a 4 + 2rnSo 

Equations (7.35) and (7.40) taken together lead to 

y(lh 
,ta) + w&- 

k,n 2B 0 
= B(kb)n 

’ +28, 
k = 2,3 

(7.39) 

(7.40) 

(7.41) 

i.e. the combination (7.24) is independent of renormalization scheme. F32 

Just before Eq. (7.35) we stated that (2) Tk n are independent of the 
9 

(2) renormalization scheme. On the other hand it is obvious that Tk n depend on the ’ 
assumptions about the “quark target” used to extract the coefficient function. In 

the discussion above we concentrated on a class of calculations in which the “quark 

target” is massless with space-like momentum p* < 0. One could equally well 

0) consider massive quarks with p* = 0, In that case Tk n would be different from the ’ 
(2) case considered here. Also An in a given renormalization scheme depends on the 

(2) target (the state between which On is sandwiched). The dependences of Tk n and ’ 
A(*) n on the “quark target” cancel, however, in the calculation of Bk n as should be ’ 
the case. We shall illustrate this with an example in Section VIII. It is important to 

keep in mind the points discussed in this Section when comparing various 

calculations in the literature. 
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E. Results for y$-‘” and Bzsn 
9 

(l),n As we have stressed several times one has to make sure that yNs and Btsn 
9 

are calculated in the same renormalization scheme in order that a physical answer 

for the moments of structure functions is obtained. The calculation of the two- 

(114 loop anomalous dimensions y NS NS is much more involved than that of B k n and 
’ 

therefore it is useful to choose a renormalization scheme in which the calculation 

of ,(l$n - 
N is simplest. The minimal subtraction scheme of ‘t Hooft, which we have 

discussed in Section III, turns out to be a convenient scheme for this purpose. 

(l),n 1. Two-loop anomalous dimensions y NS 

It has been shown by (Floratos, Ross and Sachrajda, 1977) that in the 

‘t Hooft’s renormalization scheme the two-loop anomalous dimensions can be simply 

obtained from the coefficient of the l/c pole in the quark matrix element of the 

nonsinglet operator calculated tc order g4, plus twice the two-loop anomalous 

dimension of the quark field. The latter anomalous dimension is also obtained in 

the ‘t Hooft’s scheme by calculating to order g4 the coefficient of l/c pole in the 

quark self -energy. Typical diagrams for these two calculations are shown in Figs. 

24 and 25. In the whole there are about 30 two-loop diagrams which one has to calculate 

(l),NS in order to obtain yNS . All these diagrams have been calculated in the paper by 

Floratos, Ross and Sachrajda where the interested reader can find the details of the 
F3 

calculation. + he (l),NS analytic expressions for y n as given in the original paper is 

very complicated. (l),n A simpler formula for yNs can be found in the paper by 

( Gonzalez-Arroyo, et al., 1978). The numerical values for y(nl)yNS are given in 

(lb Table 3. We would like to remark that y NS in the minimal subtraction scheme 

are gauge independent (Caswell and Wilczek, 1974). 
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2. Brsn in ‘t Hooft’s scheme (electromagnetic currents) 

The first calc:lation of B”;1”, in the minimal subtraction scheme has been 
’ 

done by (Bardeen, auras, Duke and Muta, 1978). Contrary to the calculation of the 

two-loop anomalous dimensions, the calculation of B NS k n in the scheme in question is ? 
generally more complicated than in other schemes. The reason is that in the 

‘t Hooft’s scheme the g* corrections to the matrix elements of local operators 

A(*),NS 
n are non-zero and must be explicitly calculated in addition to the g* 

corrections to the virtual Compton amplitude. 

The calculation of the virtual Compton amplitude for scattering off quarks in 

g* order involves the diagrams of Fig. 26. The diagrams contributing in g* order to 

the matrix elements of non-singlet operator between quark states are shown in Fig. 
8F34 . Explicit expressions for 70 z ,‘,Ns and A (*),NS 

n can be found in the original paper. 
’ 

Here we only remark that although 70 i hNs and p,(*),NS 
n are separately gauge 

’ 
dependent the resulting expression for BNS ’ 2 

’ 
n IS gauge independent as expected in the 

minimal subtraction scheme. We have 

n 1 
c j=lT 

n, even 

41 1 3 +4 L- e -+n +(A +$-9 ’ 
s=ls j=lJ 

+TYNS ‘+(ln 4’ - y E) 

and 

BNS L,n - :” (A 
-- n even . 

(7.42) 

(7.43) 

The last result for BNS L n which is renormalization prescription independent has been 9 
previously obtained by other authors (Zee, Wilczek, Treiman, 1974; Kingsley, 1973; 
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Walsh and Zerwas, 1973). Recently the calculation of B!sn in the minimal , 
subtraction scheme has been repeated by (Floratos, Ross and Sachrajda, 1979) who 

have reproduced the results of Eq. (7.42). 

For the calculations of BNS . 2 n m renormalization schemes different from that 
9 

considered here we refer the reader to the papers by (Calvo, 1977; De Rujula, 

Georgi and Politzer, 1977a;Altarelli, Ellis and Martinelli, 1978; Kubar-And& and 

Paige, 1979; Abad and Humpert, 1978 ). 

3. BNS . k n in the It Hooft’s scheme (weak currents) ’ 
In the evaluation of g* corrections to v and < deep-inelastic scattering it is 

convenient to consider certain combinations of v ,v structure functions which have 

simple properties under crossing. These are 

and 

FF + FuP 2 

F;p - F3”P 

F;p + FyP . 

(7.44) 

(7.45) 

(7.46) 

(7.47) 

The remaining structure functions for scattering off neutron or nuclear targets can 

be directly obtained from (7.44)-(7.47) using charge symmetry. For instance 
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$p _ F;P = F;” 
2 

-F”p = Fip-Fzn 
2 . (7.48) 

In order to calculate g* corrections to F *, one considers again the diagrams of Figs. 

8 and 26 except that now the diagrams with both vector currents replaced by 

axial-vector currents also contribute. The combinations (7.44) and (7.45) 

correspond to subtracting and adding crossed diagrams of Fig. 26, respectively. 

The structure function F3 corresponds to the vector-axial-vector interference 

and therefore the diagrams contributing to it are obtained from Fig. 26 by 

replacing one of the vector currents by an axial vector current. Again the 

calculation of the gL corrections to the combinations (7.46) and (7.47) corresponds 

to subtracting and adding crossed diagrams respectively. 

By inspecting the diagrams directly or by considering the decomposition (3.51) 

and taking into account known properties of various structure functions under the 

transformations u + v , x * -x one can easily find whether even or odd spin 

operators contribute to each of the combinations (7.44-7.47). It turns out (Bailin, 

3-v Love, Nanopoulos, 1974; Politzer, 1974) that to F2 and Fp only odd spin and to 
,>” 

2 and Fy-’ only even spin operators contribute. 

Finally we have to determine which combinations are independent of gluon 

operators, and therefore satisfy simple renormalization group equations as given in 

Eq. (4.8). The combinations (7.44) and (7.46) transform obviously as non-singlets 

under flavor symmetry and therefore satisfy equations like (4.8). Fjp + F;p is a 

singlet combination as discussed in Section II. Therefore because of mixing 

between gluon and fermion singlet operators this combination will satisfy more 

complicated renormalization group equations, which we shall discuss in Section VIII. 

On the other hand, FF” still satisfies Eq. (4.8) in spite of having contributions 
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from singlet fermion operators. This is because the gluon operators of odd spin 

transform differently under charge conjugation than the corresponding singlet 

fermion operators and therefore there is no mixing. 

In the minimal subtraction scheme the results for the parameters Bk n 
7 

relevant for v, 7 scattering are as follows (Bardeen, Buras, Duke and Muta, 1978) 

BF-U 
24 

= By’, , 

,3-v 
Ln = Bysn 

9 

B;‘v _ BNs -3 ‘%I+2 
3,n - 2,n 3 ni 

9 n odd 

n odd 

(7.49) 

n odd - 
n even . (7.51) 

where BySn and Bysn 
9 9 are given by (7.42) and (7.43) respectively. Result (7.50) has 

been previously obtained by (Zee, Wilczek, and Treiman, 1974). For the calculation 

of B$ in different renormalization schemes from those considered 9 and ByiU 
I 

here we refer the reader to the papers by (Calvo, 1977; Altarelli, Ellis and 

Martinelli, 1978). 

4. Corrections to sum rules and parton model relations 

It is well known that in the leading order of asymptotic freedom parton model 

-2 relations and sum rules are satisfied. The g corrections discussed in this section 

can generally introduce violations of the sum rules and relations in question. 

Notice in particular that the g2 corrections to the Q2 dependence of F3(x, Q2) 

differ from the corresponding corrections for F2(x, Q2). 

Evaluating formulae (7.49)-(7.51) for n = 1 and recalling that y\S = 0 for n = 1 

due to current conservation one obtains corrections to the Gross-Llewellyn-Smith 
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sum rule (Gross and Llewellyn-Smith, 1969) and the Bjorken sum rule (Bjorken, 

1967) as shown in Eqs. (2.99) and (2.100) respectively. In Fig. 27 we have plotted 

predictions of Eqs. (2.99) and (2.100) versus Q2/A2. We observe that the 

deviations from the two sum rules in question are predicted to be non-negligible 

and accurate measurements should detect them. 

We defer the discussion of QCD corrections to the Callan-Gross relation (Eq, 

2.43) to Section VIII. 

F. Phenomenology of the Order g2 Corrections (Non-singlet Case) 

In this section we shall compare the formula 

MNS(n Q2) k -NS 
k ’ = ‘NSAn I [ 3 lnQI. 

-d”NS 

A2 
(7.52) 

with experiment (Bardeen, Buras, Duke and Muta, 1978). The only free parameters 

-NS in Eq. (7.52) are the constants An and the scale parameter A. These parameters 

are to be found by fitting the formula (7.52) to the data for as large a range of Q2 

as possible. 

As we have discussed in Section VII.A, there is freedom in defining the 

effective coupling constant and, correspondingly, the parameter A. The A which 

NS NS enters Eq. (7.52) corresponds to R k,n given by Eq. (7.17) with Bk n calculated in 9 
‘t Hooft’s wjlnimti scheme and to the following form of g2(Q2) 

= 1 

B, In T2 

Bl 

7 
0 

2 
In In F2 

11 

in2 QZ 
A2 

1 

ln3 2 
A2 

(7.53) 
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Clearly this definition of A is not unique, and we shall now discuss other possible defi- 

nitions. 

The effect of the redefinition of A is equivalent through order g2(Q2) to the 

shift of RFyn(Q2) by a constant amount proportional to the one-loop anomalous 

‘@ dimension y NS . In fact resealing A in Eq. (7.52) to A’ by 

A = KA’ (7.54) 

where K is a constant, and dropping terms of order $(Q2) generated by this 

resealing one obtains 

MNS(n Q2) = d k ANS k ’ NS n ’ 
J 

B,ln y, . 
A2 

L 
I 

where 

R’;;n(Q2) = R;yn(Q2) + y$n K . 

?  -l 

. (7.55) 

(7.56) 

The A’ thus corresponds to the s” corrections given by Eq. (7.56) and g’(Q’) having 

the form of Eq. (7.53) with A replaced by A’. 

It should be remarked that Eqs. (7.52) and (7.55) are equivalent represen- 

tations of next to the leading corrections. On the other hand they correspond to 

different estimates of the higher order terms 0 g (Q2)) not included in the analysis. r 

This is obvious, since in going from Eq. (7.52) to (7.55) we drop terms of O@(Q2)). 

It should be remarked that since the n dependences in Eqs. (7.52) and (7.55) are 
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different from each other so will be the free parameters Afs and A extracted in 

both cases. However if the estimates of terms of O(2) by Eqs. (7.52) and (7.55) are 

not very different from each other, the equations in question should give equally 

good fits to experimental data. To illustrate this we have compared two different 

schemes for h with data of BEBC for the moments of Fi (Bardeen et al., 1978). 

The first scheme we call the minimal subtraction scheme, and we denote the 

corresponding value of A by AMS. This scheme is defined by Eq. (7.52) with A 

replaced by ~~~ The second scheme is defined by choosing in Eq. (7.54) 

K = exp [ -Yz(ln HIT - y E) 1 . (7.57) 

We shall denote the corresponding h by Am Effectively (see (7.55)) the MS 

scheme is represented as the MS scheme by Eq. (7.52), but with A replaced by AK 

and Rf$,(Q’) replaced by R k n -Ny (Q2) which is given as follows 

E;sn(Q2) = RFsn(Q2) - K y $f(ln 4?~ - y E) . 
9 9 (7.58) 

Recalling Eqs. (7.17) and (7.42) we observe that the MS scheme does not involve the 

terms (In 4n - YE). The comparison of these two schemes for A with the BEBC data 

leads to the following values for hMS and Am 

A MS = 0.40 GeV 

hKE = 0.52 GeV (7.59) 
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In obtaining these values, Nachtmann moments of Eq. (2.123) have been used. The 

fits to the data are indistinguishable from each other and are represented in Fig. 28 

by a single curve. The leading order prediction (not shown in the figure) 

My%, Q2) ILo 
-4A 

with 

A Lo = 0.73 GeV . 

(7.60) 

follows very closely the solid line of Fig. 28. We shall discuss below more sensitive 

ways of comparing higher order predictions with the 1 eading order results. 

We recall that in fitting the data both A’s and An’s have been treated as free 

parameters. Therefore the fitted values of the uncalculable matrix elements An’s 

are different for different schemes. The similarity of the LO, IMS and MS fits 

simply indicates that it is possible for the An’s and >- in each case to conspire to 

mask the combined n- and Q2-dependence of the order g2 corrections. Of course 

the similarity of the fits of higher order corrections (MS and MS schemes) and of 

leading order predictions is, strictly speaking, only true over some not too large 

range in Q2 as is the case for the presently available data. 

It is instructive to calculate the term 

(7.61) 

I+ 
Rag, 

L) (7.62) 
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in Eq. (7.52), which is equal unity in the leading order. The numerical values for 

the quantity (7.62) are given for the MS and MS schemes in Table IV. We observe in 

accordance with earlier expectations (Gross, 1974; Gross, Wilczek and Treiman, 

1976) that, for large values of n and for not too large values of Q2 higher order 

corrections are large and perturbative calculations cannot be trusted. This 
NS behavior is mainly due to the constants B k n which for k f L grow like (In n)2. We 

9 
observe also that the terms (7.62) are much smaller in the MS scheme as compared 

to the MS scheme. The MOM scheme of Table IV is discussed in Section VI1.H. 

As we already discussed above some part of the effects due to higher order 

corrections in the second term in Eq. (7.52) can be absorbed over a not too large 

range of Q2 in the (incalculable by present methods) hadronic matrix elements of 

local operators. This makes the phenomenological study of higher order corrections 

in deep-inelastic processes complicated. We shall see in Section IX that the 

situation is much better in photon-photon scattering where 

expression and the next to the leading order predictions 

the leading order 

are free of the 

incalculable matrix elements of local operators. 

The values of A as given in Eqs. (7.59) and (7.61) have been obtained for f = 4 

and without taking quark mass effects into account. At low values of Q2 (few 

GeV2), the massless approximation is probably justified for the light quarks, but not justi- 

fied for the charm quark contributions. The effect of heavy quark masses (in the B function) 

for the extraction of the value of A in the analysis with higher order corrections 

included has been recently studied by (Abbott and Barnett, 1979), who find the 

values of A ,which are smaller by roughly 20% than those in Eqs. (7.59) and (7.61). 

We think that heavy quark mass effects deserve further study. 
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G. A, Schemes 

As we discussed at the beginning of this section, if the coefficient of 

l/(B,ln Q2/A2) in Eq. (7.52) were independent of Q2 and had exactly the same n 

dependence as yI($, then all g2 corrections could be absorbed in the parameter A, 

and the higher order formula would look like the leading order expression. 

Conversely, we could say that the leading order formula assumes that the next-to- 

leading order corrections have the same n dependence as the yI($. Therefore it is 

of interest to see whether the next-to-leading order corrections, which we have 

calculated in this Section, exhibit a non-trivial n-dependence different from yiin. 

To this end it is useful to cast Eq. (7.52) into a different form (Bate, 1978; Bardeen 

et al., 1978). One can, for instance, (Bardeen et al., 1978) perform the integral in 

Eq. (7.10) exactly using y :S and B(g) of Eqs. (7.12) and (7.13), respectively, and 

define an n-dependent An as follows F35 

h 04 
n 

This leads to 

MFS(n, Q2) = d ks$Is 

n 

where j$ satisfies the following equation 

,(l),n 

24 - d”Ns 
ii2 n 

16n2 

(7.63) 

-I d”Ns 
1 . (7.64) 

(7.65) 
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It turns out that the factor involving y i$” ’ in Eq. (7.64) is always very near unity 

in the region of interest, hence Eq. (7.64) has essentially the same form as the 

leading order Eq. (7.60). Therefore the difference between the leading order and 

the higher order corrections, so far as the n dependence is concerned, resides 

(k) -NS almost entirely in the scale A,, . Notice that if B k n were proportional toy Ovn, 
9 NS 

A(k) 
n would be independent of n. There is one weak point in the An scheme discussed 

above. Although MFS(n, Q2) is renormalization-prescription independent, An as 

defined in Eq. (7.63) depends on the renormalization scheme through gFsn. 
7 

Similarly, the third factor in Eq. (7.64) depends on the renormalization scheme 

through ~51’~~ -NS 
s l 

Fortunately, in the ‘t Hooft’s scheme the B k n give the dominant 
9 

contribution to the higher order corrections and the third factor in Eq. (7.64) is 

close to unity. Therefore, in the ‘t Hooft’s scheme discussed here, the A:’ as 

defined in Eq. (7.63) is a useful quantity for testing the n dependence of the higher 

order corrections. It should be kept in mind, however, that one can find 

renormalization schemes in which the main n dependence of higher order 

(lb corrections resides in yNs ; in this case A:) of Eq. (7.63) would be useless for 

testing the higher order corrections. 

04 In order to compare the n-dependence of h n with the data, one fits 

MF’(n, Q2) as given by Eq. (7.64) to the data for each n separately and extracts in 

this way the experimental values for An. It turns out (Bardeen et al., 1978) that for 

n < 5 the n dependence predicted by formula (7.63) is in fair agreement with the 

BEBC data for F3 (Bosetti et al., 1978). For higher values of n the BEBC data do 

not agree with Eq. (7.63). Recently the analysis in question has been repeated by 

(Duke and Roberts, 197%) who also took into account the CDHS data for F3 

(de Groot et al., 1979a)and Fermilab (Gordon et al., 1978) and SLAC data for Fg-“. 

A similar analysis has been carried out in a slightly different way by (Andersson et 
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al., 1979). It follows from the analysis of Duke and Roberts (see Fig. 29 F %at there 

is remarkable agreement of formula (7.63) with the data for F$-” and agreement 

for low n with the CDHS data for F3. We may conclude that there are indications 

in the data for the n dependence of An as predicted by QCD. 

A comparison of the higher order prediction (7.52) and the leading order 

prediction (7.60) can be done in a simpler way than discussed above, at the price of 

introducing a weak Q2 dependence into An. The method discussed below is very 

similar to that proposed by (Bate, 1978). 

Eq. (7.52) can be written as follows 

MN% Q2) k ’ 
= 6 k $S 

NS n 

where 

-d”NS 
(7.66) 

A(kJtQ2) _ 7 exp ‘!!?n(Q2) 
n -1 1 04 . (7.67) 

’ NS 

Now the difference between the leading order and higher order corrections resides 

t totally in A,(Q’). U A ex using Eqs. (7.17) and (7.21) we can write 

Ank)(Q2) = ii Z,(Q’,h ) (7.68) 

where 

Zn(Q2, 71) = [ T2] -8l’28’ exp [ 2ifiLn ---J ] exp [s] . In 2 (7.691 
0 
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Notice that the first factor on the r.h.s. of Eq. (7.69) represents the Q* evolution of 

(k) 2 An (Q ). The second factor, on the other hand, introduces additional n dependence 

04 as compared with the An scheme of Eq. (7.63). Since this additional n dependence 

(a 15% decrease from n ‘k) 2 = 2 to 10) is very weak, the n dependence of AA (Q ) is 

(k) essentially the same as that of An , which changes roughly by a factor 2 over the 

range from n = 2 to 10. The Q2 dependence of the first factor in Eq. (7.69) is such 

that for f = 4 and x = 0.3 and x= 0.5, at Q2 = 100 GeV’, Z&Q’, 7) is suppressed by 

the factors 1.23 and 1.29, respectively. 

In summary, the ALk)(Q2)scheme as defined by Eq. (7.66) is (except for the 

(k) overall factor) quite similar to the An scheme of Eq. (7.64), but very accurate 

experiments should detect the Q2 dependence as predicted by Eq. (7.69). In Fig. 30 

we have shown Aj12)(Q2) for ? = 0.5 and f = 4 as functions of n and Q2. For 

comparison we plot the last factor in Eq. (7.70) which represents the An gcheme. (k It 

(k) 2 should be remarked that An (Q ) in Eq. (7.67) is renormalization-prescription 

independent. 

Finally we would like to remark that (Anderson et al., 1979) have extracted 

,+2) (2) 2 n using the formula (7.66) and neglecting the Q2 dependence of An (Q ). Their 

results agree very well with Eq. (7.63). In order to test the Q2 dependence of 

(2) 2 An (Q ) as given by (7.67) one should repeat Anderson’s analysis in various ranges 

of Q2, e.g. 2-5 GeV’, 5-10 GeV’, LO-30 GeV’, etc. The prediction of the theory is 

(2) that for a fixed n value a slow decrease of An with increasing Q2 should be 

observed. The present data are however not accurate enough to detect this Q2 

dependence. Notice that the Q2 dependence in question is entirely due to the two- 

loop contributions to the 6 function. 
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H. Other Definitions of c2(Q2) 

In the previous subsections we have discussed the MS and MS schemes for the 

effective coupling constant. The corresponding parameters RySn 
7 and l?:Sn are 

9 
related to each other by Eq. (7.58 ) and the numerical values of the quantities of 

Eq. (7.62) for these two schemes are collected in Table IV. We observe that in the 

expansion in the inverse powers of logarithms the next-to-the-leading order 

corrections to MF’(n, Q2) are smaller in the MS scheme than in the MS scheme. 

Generally one can introduce other definitions of g2(Q2) for which the parameters R 

are related to the corresponding parameters of the MS and MS scheme as follows 

= I$“,- 
9 

K y$J(a - 1.95) . 

Here a is a constant, which distinguishes between various schemes and 

1.95 = In; 4WYE. In particular Barbieri et al. (1979) and Celemaster and Gonsalves 

(1979) have discussed g2(Q2) as defined by momentum space subtraction. The 
-2 2 g (Q ) so defined is gauge dependent but the gauge dependence is very weak. 

Cel emaster and Gonsavles have used the Landau gauge for which a = 3.5. The case 

discussed by Barbieri et al. corresponds to a = 3.6. We observe that in both cases 

the parameters R are smaller than in the MS and MS schemes. One could conclude 

from this that the next-to-the-leading order corrections in the schemes based on 

momentum subtraction are smaller than in the MS and MS schemes. However in 

order to be able to draw any conclusion one has to determine first from experiment 

the values of A for momentum subtraction schemes. We have made the following 
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exercise. We took x = 0.50 GeV extracted from the BEBC data and ‘E; = 0.30 GeV a 

value more relevant for the CDHS data and calculated the moments My’(n, Q~) in 

the MS scheme for these two cases. Next we found the values of A mom 

(momentum subtraction) by fitting the moments M2 NS(n, Q2) calculated in the 

momentum subtraction scheme with a q 3.5 to the moments M2 NS(n, Q2) calculated 

in the E scheme. For 7~ 0.50 GeV and n = 0.30 GeV the corresponding values of 

A mom turn out to be Amom = 0.85 GeV and Amom = 0.55 GeV. The effective 

coupling constants in the three schemes considered for A = 0.40 GeV, n= 0.50 GeV 

and A mom q 0.85 GeV are plotted in Fig. 31. We observe the following inequalities 

which correspond to 

RNS 
2,n > l+j; > RySn I,,,. Furthermore we observe that in all cases considered 9 9 

the effective coupling constant is smaller than that given by the leading order 

expression. The numerical values of the quantities of Eq. (7.62) for the three 

schemes are shown in Table IV. We conclude that in the expansion in the inverse 

powers of logarithms the next-to-the-ieading order corrections to MyS(n, Q2) 

calculated in the momentum subtraction scheme with a = 3.5 are larger than those 

in the MS scheme but smaller than in the MS scheme. 

In spite of this analysis we cannot say which of the schemes considered leads 

to the best convergence of the perturbative series. In order to be able to answer 

this question one would have to calculate higher orders in g2(Q2) not included in the 

analysis. Needless to say the n dependence of An(Q2) or An discussed in the 

previous subsection is independent of the definition of z2(Q2). 
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VIII. HIGHER ORDER ASYMPTOTIC FREEDOM CORRECTIONS 
TO DEEP-INELASTIC SCATTERING (SINGLET CASE) 

A. Preliminaries 

In the last section we have discussed next-to-leading asymptotic freedom 

corrections to the moments of the non-singlet contributions to the deep-inelastic 

structure functions. In this section we shall extend the analysis to the singlet 

contributions. Such an analysis requires the calculation of the two-loop anomalous 

dimension matrix and of the one-loop corrections to the fermion singlet and gluon 

Wilson coefficient functions. As in the non-singlet case, one has to take care that 

all these quantities are calculated in the same renormalization scheme. In the 

minimal subtraction scheme one-loop corrections to the fermion singlet and gluon 

Wilson coefficient functions have been calculated by (Bardeen, Buras, Duke and 

Muta, 1978) and by (Floratos, Ross and Sachrajda, 1979). The latter authors have 

also computed the two-loop anomalous dimension matrix. The study of the next-to- 

the-leading corrections in the singlet sector is complicated by the mixing of gluon 

and fermion singlet operators. The problem of mixing for the next-to-the-leading 

order corrections was first solved by (Floratos, Ross and Sachrajda, 1979). Here we 

shall present an equivalent, but slightly simpler , approach of (Bardeen and Buras, 

1979b)F3$ost of our discussion will be rather formal and only at the end of this 

section shall we present a parton model formulation of asymptotic freedom beyond 

the leading order. 

B. Moments of the Singlet Structure Functions 

We shall now derive Eqs. (2.101)-(2.117) of Section II. We begin with 

F2(x, QL). In the formal approach of Section IV the moments of the singlet part of 

F2 are given as follows 
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h$(n,Q’) : l,i”” x”-~F~~x,Q~) = Ai(u2)C$,n ($ , g’) 
1-I 

with all symbols defined in Section 1V.A. 

The Q2 dependence of the coefficient functions C~,n(Q2/~2, g2) and 

C:,n(Q2/p2, g2) is governed by the renormalization group Eq. (4.20) which has the 

following solution 

~2,n($g2) = [Tgexp ‘,BbZ,d&$$$ ] 52,n(I,i2) 

with g(u2) = g. As in Section 1V.C we have introduced here the column vector 

E2,n($y 9’) = 

m cll’ $,g2 0 ( 1 P2 

‘(jn ‘Yg2 Y i 1 u2 

(8.2) 

. (8.3) 

The 2 x 2 anomalous dimension matrix F”(g)- is shown explicitly in Eq. (4.22). It has 

the following perturbative expansion 

^v “(g) = +n L + $l),n L + ,.. 
167~’ (16n2J2 

. (8.4) 

We shall now express the T ordered exponential in Eq. (8.2) in terms of the 

coefficients in the expansions (7.13) and (8.4). Denote first 

%g, 9 = Tg exp I- g dp’j$f 
dQ2) 

(8.5) 

and write it as 
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fag, ijl = %g) [ exp($lni)] ?‘(a (8.6) 

where G(g) is a 2 x 2 matrix which we shall now find. To simplify the notation we 

shall drop the index n in Eqs. (8.7)-(8.1 I). 

Differentiating both sides of Eqs. (8.5) and (8.6) with respect to g we obtain 

respectively 

agW(g,a = @J t(g) exp 
A0 c 3 ;f- I+ iJ-'tj$ 

0 
(8.7) 

and 

a,WCg, 3 = agv(g) - "v(g) $ $ . (8.8) 
0 

Equating the r.h.s. of these two equations we obtain after some manipulations the 

following differential equation for e(g) 

a gi(g) + $ [ $itg,] = (g$ +Eg) i(g) 

Writing next 

G(g) = ? + AZ- v^ 
16~’ ’ 

where 1 is a unit matrix, we obtain the following algebraic equation for t2 

2^v2 + 
-0 ,-. 

1 I 
$1) FOB1 

k’V2 z-B+--- 
0 0 62 0 

. 

. (8.91 

(8.10) 

(8.11) 
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AO,n . In order to solve Eq. (8.11) it is useful to choose the basis in which y IS diagonal. 

As in Section 1V.C we introduce the matrix U which diagonalizes y Ao9n by 

A” 0 
b-lp O,nG = 

(- ) 

. (8.12) 
0 x” + 

A 
Explicit expression for a U matrix which does this job is given in Eq. (4.30). 

In the basis in which yopn ’ A (l),n IS diagonal, the matrices y and G2 are given as 

follows 

(8.13) 

and 

Diagonalizing Eq. (8.11) and using Eqs. (8.12)-(8.14) we obtain 

y(lh pB -- - 1 -- +- 
5- q 28, 28; 

+l),n p B 

%’ = ii, 
+ 1 --+- 
2B2 

0 

. (8.14) 

(8.15) 

(8.16) 
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v;+ = - 
y (l),n 

-+ 
(8.17) 

a3 O+x ;-A: 

v;- = - y (lh +- 
230+x~-xn 

. (8.18) 

Explicit expressions for y (l&n, y (l),n, ,(l),n and ,(l),n 
-- ++ -+ +- are given in Eqs. 

(2.109) to (2.112). A s iscussed in Section 1V.C the 6 matrix which diagonalizes d’ 

T o,n is not uniquely defined by Eq. (8.12), and any other matrix related to ^u by Eq. 

(4.29) will also satisfy Eq. (8.12). It follows from this that only the diagonal 

elements yO,n, Y(‘),~ (l),n (l),n -- ++ and the product y+- .y-+ are independent of our choice 

of fi. Eqs. (2.109)-(2.112) correspond to ?J given by Eq. (4.30). 

To proceed further we introduce a column vector 

C& <YE2 - Y ( 1 ’ P 

G,n ( ). Qf,g2 
112 

= ^v-lc’ 
2,n($,g2) ’ 

The components C z,,(Q2/p 2, g2) are easily obtained by first writing 

ir-‘k2,n( $, g’) = ?‘ii(g, gJ ii-l?52,n(l, i2, 

(8.19) 

(8.20) 

and then using Eqs. (8.61, (8.12)-(8.14). The result is 
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and 

- ‘2,n( . 

‘)y putting Q2 = p2 in Eq. (8.19). Furthermore Here Ciyn(l, g2) are obtained k 

-_ 
d ,n cs2 

l-l2 1 

( 1 
$42 
1-I 

“G,n 

where ? a 2,n(Q2/ u29 g2) are given as follows 

1 (8.21) 

(8.22) 

(8.23) 

A”+ 
d:” = 28, . (8.24) 

We next expand C zyn( 1, g2) and C: 
Y 
n( 1, i2) ’ m a power series in g2 as follows 

1+&j+ 
16~r~ 2,n (8.25) 

and 
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($Jl, g2) = 6;) if- BG 
167~~ 2yn 

where 6f) depend on weak and electromagnetic charges. Defining also the 

perturbative expansion for C g,,(l, g2) by 

(8.26) 

C& i2, = C;f 1 + 2 B’ 
Y 161~’ 2yn 1 

we obtain from Eqs. (8.19), (8.25), (8.26) and (4.31) 

(8.27) 

and the formulae (2.107) and (2.108) for Bz n. 
Y Equation (8.27) is the generalization 

‘of the leading order expression (4.37). With all the formulae above at hand, we 

could now perform matrix multiplication in Eq. (8.21), and we would reproduce the 

Eq. (2.13) in the paper by (Floratos, Ross and Sachrajda, 1979). In order to obtain 

slightly simpler equations we proceed in a different way. 

We first write Eq. (8.1) as 

(8.28) 

Ms(n, Q2) = “An(u2)c’ 2,n($ ,g’) 

where $( $) is a two component row vector given by 

Ant P2) = [ A;(u’), A;( u2) I 

(8.29) 

(8.30) 

Defining next 
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1 + 2- ?G,;r ) 
161~~ 

(8.31) 

we obtain 

M$n, Q2) = ?(u2)e; n 
Y + A$12)c+ “2,n( ‘tf2 ,g’) (8.32) 

with C -2;ntQ2/u2, g2) g’ iven by Eqs. (8.22) and (8.23). 

Next using Eq. (7.19) for g2(Q2), we obtain the final expression for the 

moments of F2(x, Q2) 

M;(n, Q2) = &t2)K- 
9 n 

R; .(Q2) Y 

8, In 2 
A2 

where 

-d; 

R;JQ’) = 
A& 

R; n - - 
Y 4 

(8.33) 

(8.34) 

and the constants Rz 
Y 
n are given as follows 

T T 
y (I_)4 

R2,n 
T+ = BZyn +28, - 

A& 
y(l),n 

7+ 

28, + hi - 1; 
. (8.35) 

Anrare constants which are related to ii(u2) by 
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--T 
-d; 

An = + i’(p2) [ i2(lJ2) ] (8.36) 

2 K ’ are independent of u . Equation (8.33) is the generalization of the leading 

order formula (4.41b). It should be remarked that K t and Rz n are independent 
Y 

of the choice of the matrix U. 

The matrix U of Eq. (4.30) differs from that used in the paper of (Floratos, 

Ross and Sachrajda, 1979). However as the interested reader may check y (l),n , -- 
y(l),n 

++ 
and ,(lh ,(lh 

-+ +- are the same as in the paper in question. 

Let us brlef!y discuss Eq. !8.33). It is probably the simplest possibie 

representation of the next-to-leading order corrections for the singlet structure 

functions. We would like to emphasize two important features of Eq. (8.33) 

i) no reference is made to a special value of Q2 = Q$ and 

ii) no reference is made to the parton distributions. 

The property i) has already been discussed in Section IV in connection with the 

leading order expressions. It is required by renormalization group equations and 

incorporating it in M?Jn, Q2) simplifies phenomenological applications. In particu- 

lar the Step 9 of the procedure of Section II can be omitted if Eq. (8.33) is used. 

Concerning ii) we would like to recall that the parton distributions cannot be 

uniquely defined beyond the leading order of asymptotic freedom (see Section VIIIE for de- 

tails). Many definitions are possible, which differ from each other by next-to-leading order 

corrections. Therefore the study of higher order effects on the Q’ evolution of quark and 

gluon distributions does not make much sense because the result of such a study is not a 

prediction of the theory but depends sensitively on one’s definition of parton 

distributions. Furthermore equations for the Q2 evolution of parton distributions 
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are much more complicated than Eq. (8.33). Therefore we think that the simplest 

and most straightforward tests of higher order corrections can be done directly by 

means of Eq. (8.33) and (7.20b) without any reference to parton distributions. Still 

with a given definition of parton distributions, the parton language may be useful in 

comparing asymptotic freedom predictions in various processes such as deep- 

inelastic scattering, Drell-Yan process, etc. Therefore at the end of this section 

we shall discuss a parton model formulation of higher order corrections. 

After having discussed some attractive features of Eq. (8.33) we should 

mention a possible limitation in the use of it. We observe that the last term in the 

expression for R;,n in Eq. (8.35) is singular when dy = d_” + 1. While this singularity 

does not appear for physical values of n and f, it can lead to anomalously large 

higher order corrections to the ‘,-,, contributions and an apparent breakdown of 

perturbation theory. 

The singularity in R; 
,n 

is of course spurious and must be cancelled by other 

terms in Eq. (8.33). At this stage it should be recalled that A,’ are rather 

complicated functions (see Eqs. (8.31) and (8.36)) of the matrix elements of singlet 

fermion and gluon operators and of various renormalization group parameters which 

we lumped together in order to obtain a simple expression and get rid of lo 2 = Q; 

dependence. In doing this we have generated singularities in 5 ,n and AA for non- 

integer f and n which cancel each other in the full expression. In fact, on the basis 

of Eqs. (8.31) and (8.361, rn can be written as follows 

“; = AA + +o (3.37) 

where Ai is non-singular and the singularity is in R;’ which is given as follows 
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R;+ = 
+n 

-+ 
Y 

Qz is an arbitrary scale. Inserting Eq. (8.37) into (8.33) we convince ourselves that 

the singularity in Rn is indeed cancelled by that in R;;‘. 

From a detailed numerical study of the singularities in %,n (Bardeen and 

Buras, 1979b) it follows that only in the case of n = 2 and then only for f = 5 and 6 
F3 is the separation of the singular part as shown in Eq. (8.37) necessary. F or all other 

physical values of n and f, the existence of a nearby singularity does not disturb the 

validity of the perturbative nature of the corrections and Eq. (8.33) can be safely 

used. 

For completeness however we would like to mention that one can derive an 

equation for M52(“, Q2) which, although is slightly more complicated than Eq. (8.33) 

and involves explicitly Q$ can be easily continued to non-integer values of f and n. 

This is the Eq. (2.1 Ola) which can be easily derived by performing matrix 

multiplication in Eq. (8.21), instead of absorbing the first factor on the r.h.s. of Eq. 

(8.21) into matrix elements of local operators as was done in the present derivation. 

So far we have discussed only F$x, Q2). The formula for the singlet part of 

the longitudinal structure function can be derived in a similar way by replacing the 

Eqs. (8.25) and (8.26) by 

(8.38) 

C;,n(l, g22, = gL i?- B’ 
+ 1Ga2 L,n 

and 

(8.39) 

~;,~(l, g2, = 6; z BG 
16-rr2 Lyn 

(8.40) 

The result is 
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ML(n, Q2) = A- 6 L %,n 
n 4J 

[ 1 
InQI 

-d; 

A2 
(8.41) 

where AZ are given by Eq. (4.43) and 8: n are obtained from formulae (2.107) and Y 
(2.108) for k = L. Longitudinal structure function is discussed in more detail in Sub- - 

section F. 

This completes the derivation of the basic asymptotic freedom formulae for 

the moments of singlet structure functions with next-to-leading-order corrections 

taken into account. We shall now discuss the calculations of various parameters 

which enter the formulae (8.33) and (8.41). 

4l),n J, C. Results for y G 
y Bk,n and B k,n 

As in the case of non-singlet contributions, one has to make sure that y A(l),n , 

Btn and Y Bt n Y are calculated in the same renormalization scheme. Below we give 

results of calculations of these quantities in the minimal subtraction scheme. A 

nice feature of this scheme is that y n , h (1) BlCi G 
kn and Bkn in this scheme are gauge Y Y 

independent. 

1. Two-loop anomalous dimension matrix 

4l),n The two-loop anomalous dimension matrix, y , has been calculated by 

(Floratos, Ross and Sachrajda, 1979). One has to calculate quark and gluon matrix 

elements of the fermion singlet and gluon operators to order g4 and the anomalous 

dimensions of the gluon and fermion field to the same order. The details of this 

calculation are given in the original paper. Typical diagrams are shown in Figs. 32 

and 33. In the whole there are about 100 two-loop diagrams which one has to &alculate in 
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4,n order to obtain y . The analytic expressions for the elements of y A(l),n are very 

long and the authors quote the numerical values of the coefficients of various group 

theoretical factors. On the basis of this information we have calculated the 

A(1)d-i elements of y which are collected in Table 3. We only make a few remarks 

related to Table 3. 

a) The nondiagonal elements y (1) n (‘)+ and yG $y 
4JG 

differ by sign from those of 

Floratos et al. as we use the same normalizations of operators as (Gross and 

Wilczek, 1974). Notice that, consistent with these normalizations, the nondiagonal 

one-loop elements y (iin and y&n as given in Eq. (2.79) also differ by a minus sign 

from those of Floratos et al. 

b) For n = 2 we have the following relations 

(1) +yG$= o 

. (8.42) 

This is the generalization of Eqs. (5.38) and (5.39) and corresponds to the vanishing 

of the anomalous dimension of the energy momentum tensor. 

cj y(JLn 

y f-b 
w , 

contrary to the one-loop case, differs for low values of n from 

due to the appearance of various diagrams which contribute to (1) y 
4JQ 

but do 
(1) not contribute to yNs. An example of such a diagram is presented in Fig. 32b. For 

(l),n n > 4 however yNs (l),n 
=: YqJJ, l 

dJ G 

2* Bk,n and B k,n in ‘t Hooft’s scheme 

s In order to calculate Bk n and Bt n as defined by Eqs. (8.251, (8.261, (8.39) and 
Y Y 

(8.40) consider the two forward Compton amplitudes 
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TG (Q2,v) = 4 
UV 

iJd ze iqo ‘q~ ; pi T(Ju(z)Jv (ON 19; p > (8.43) 

and 

TFv (Q2, v) = i I d4zeiq l ‘t G; p IT(Jv(z)JV(0)) 1 G; p > (8.44) 

where c+; p 1 and <G; p 1 stand for fermion singlet and gluon states, respectively. 

As in the calculation of BNS k 
Y 
n we choose these states to be massless with space-like 

momenta p2 < 0. 

The Compton amplitudes above have a Lorentz decomposition as in Eq. (7.251, 

and employing the operator product expansion we obtain the following generali- 

zations of Eq. (7.26) for each n separately 

T;,n( G!zg2) = c:,n($g2)A:@-$2) + 

k = 1,2,L 

k = 1,2,L 

The matrix elements Akj(p2/u2, g2) are defined as follows 

< Pi j loi 
lJ”I”’ “n 

P,, *e-P,, + trace terms . 
1 n 

(8.45) 

(8.46) 

(8.47) 
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We next expand the elements of Eqs. (8.45) and (8.46) in a perturbation series 

as follows 

_gs_ = hk+16n2 

TG 
k,n 

’ 
2 

-VljJG Oyn In e + Bi n 
3 Y 1 

and 

(8.48) 

(8.49) 

(8.50) 

(8.5 1) 

(8.52) 

where i,j = $,G. Here 

1 k = 1,2 
hk = (8.53) 

0 k=L 

and the coefficients of the logarithms are fixed by the renormalization group 

equations which the quantities appearing on the 1.h.s. of Eqs. (8.48)-(8.52) have to 

satisfy. In order to simplify notation we have dropped the overall factors 6:. 

Inserting Eqs. (8,48)-(8.52) into (8.45) and (8.46) and comparing the coeffi- 

cients of g2 we obtain 
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GWJ _ A(2)Y$ 
Tk,n n$ k= 1,2 

Bin = (8.54) 
Y 

k=L 

and 

TfiG _ A k = 1,2 
Y 

BG k,n = 
t&G 

TL,n 
k=L 

\ 

. (8.55) 

Since to the order considered T$ and A$ 
krC, “4J 

are equal to the corresponding 

quantities for non-singlet operators, Eq. (8.54) is equivalent to (7.31), and we obtain 

B; n = B;‘, 
Y Y n = 1,2,L . (8.56) 

On the other hand, Eq. (8.55) tells us that in order to calculate Btn we have to Y 
find the forward Compton amplitude for a photon scattering off a gluon and 

subtract from it the matrix element of the fermion singlet operator between gluon 

states. In the case of the longitudinal structure function, BE n, only the forward Y 
Compton amplitude has to be calculated. The diagrams which one has to calculate 

G in order to extract B k,n are shown in Figs. 34 and lob. 
F39 

We only quote the final 

results and refer the interested reader to the original papers by (Bardeen et al., 1978) 

and (Floratos et al., 1979) for details. The results for Bi n are Y 

BG 8f 
Ln = (n + l)(n + 2) (8.57) 
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. (8.58) 

Notice the appearance of the terms (In 4~ - y E) which, as we shall show below, can 

be absorbed in the redefinition of the scale parameter A. Bt n, which is Y 
renormalization prescription independent, has been previously calculated by other 

authors (Kingsley, 1973; Walsh and Zerwas, 1973; Hinchliffe and Llewellyn-Smith, 

lP77a). For the calculations of in different renormalization schemes from that 

considered here we refer the reader to the papers by (Kingsley, 1973; Witten, 1976; 

Calvo, 1976; Llewellyn-Smith and Hinchliffe, 1977a; Altarelli, Ellis and Martinelli, 

1978; Kubar -Andre/ and Paige, 1979; Hill and Ross, 1979; Sheiman, 1979 i Abad and 

Humpert, 1978). 

3. Comparison of various calculations 

In Section VI1.D we stated that 

i) TF)n ,i Y as defined by Eqs. (7.27), (8.48) and (8.49), are independent of the re- Y 
normalization scheme but are dependent on the assumptions about the “quark target” 

or ,,gluon target,, used to extract the coefficient functions; 

ii) BL n, as defined by Eqs. (7.28), (8.50) and (8.51), are independent of the tar- Y 
get but are dependent on the renormalization scheme; 

iii) A::‘, as defined in Eqs. (7.29).and (8.52), are dependent on both target and -¶ 
renormalization scheme. 

Keeping these properties in mind it is not very difficult to compare various 

calculations existing in the literature performed in different renormalization 

schemes and corresponding to various different targets. We shall illustrate this by 

an example (Bardeen et al., 1978). 
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In the papers by (Kingsley, 1973; Witten, 1976; Hinchliffe and Llewellyn- 

Smith, 1977a; Kubar-And& and Paige, 1979; Hill and Ross, 1979) the parameters 
T 6% 

2,n 
have been calculated by considering massive quarks in the fermion loop of 

Fig. 15 and by putting p2 = 0 for the external gluons. On the other hand in the 

papers by (Bardeen et al., 1978; AItarelli et al., 1978; Floratos et al., 1979) T2(tyG 
Y 

have been calculated by considering massless quarks and putting p2 c 0 for the 

external gluons. The resulting T 2(z,),G are different in the two cases. To check the 
9 

compatibility of these two calculations we proceed as follows. 

We calculate A 4J nG in the minimal subtraction scheme with p2 = 0 and m f 0, 

where m is the quark mass, with the result (we drop the terms which vanish as m+ 0) 

‘x,( $d2) = $2 [ -tY$(+$ -YE)] . (8.59) 

On the other hand we have in the same renormalization scheme (for any target) 

(8.60) 

where B G 2 n is given by Eq. (8.58). ? Inserting (8.59) and (8.60) into (8.46) and 

replacing there p2 by -m2 we obtain 

4 4 +---,j n+l n+2 1 (8.61) 

or, equivalently, (in the notation of the papers which use p2 = 0 and m2 f 0) 
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2 
F;(x, Q2) = -g- 2f x 

161~~ L- 
(1 - 2x + 2x2)ln G2(l-x)- 

m2x 1 + 8x(1 
- 

x) 1 . (8.62) 

This result agrees with that of (Witten, 1976) (if one corrects his expression by a 

factor 4), (Kingsley, 1973, Kubar-And& and Paige, 1978, Hill and Ross, 1978) and 

(Uewellyn-Smith and Hinchliffe, 1977a) (if we replace 6 by 8 in the last term of 

their expression). A similar exercise can be performed for T’ 2,n(Q2/p2, g2) (Mu% 

1979). 

4. Discussion of the In 4 IT - yE terms 

The quantities 2 n and BG Bz n have terms which include the factors 
9 9 

(In 4 TI - yE). It should be possible to absorb these terms by redefining the 

parameter A as in Eqs. (7.54) and (7.57). To check this we insert Eqs. (8.56) and 

(8.58) into (2.107) and (2.108) and find 

(8.63) 

where BnT are free of terms involving (In 4~ - yE). Inserting formula (8.63) into 

(8.34) and (8.35) and subsequently into (8.33), we convince ourselves that, in fact, 

the (In 4~ - y E) terms can be absorbed by redefining the parameter A as in Eqs. 

(7.54) and (7.57). 

Absorbing the (In HIT - y E) terms into the parameter A corresponds to the MS 

scheme of Section VI1.F. For this scheme in analogy with Eq. (7.58) the functions 

Rz .(Q2) in Eq. (8.33) are replaced by Br 
9 2,n(Q2) which are given as follows 

E!&(Q2) = Rz .(Q*) . 9 (8.64) 

Equivalently Rz,,(Q’) is obtained from Rs ,(Q2) by replacing in (8.35) B;n by g:, 
9 9 9 

of Eq. (8.63). Similarly the Q2 independent part of Ei n(Q2) is denoted by Ei. 
? 
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D. Numerical Estimates 

The numerical values of the parameters Rtn and d: are given in Table 1. 
9 

First we notice that for sufficiently large values of Q2 and for nL 4 the next-to- 

the-leading order corrections to the ‘I-” operator are at least as important as the 

leading contributions to the rl+‘c operator. This is due to the fact that 

d: > d” + 1 for n>4 . (8.65) 

Therefore for n > 4 the next-to-the-leading order corrections to A- should be 

treated on the same footing as the leading order contributions to the K + operator. 

Furthermore for n > 8 the former contributions dominate over the latter ones. 

Similarly the next-to-the-leading order corrections to the “+‘I operator are for n > 4 

and large Q2 only as important as 1/(ln2 Q2/A2) corrections to the “-” operator. We 

further notice that for n > 4 R’ z RNS and d” 2 dks, which results from the small 

mixing between quark and gluon operators for large n and the identification of the 

“-I’ operator with the singlet quark operator. In addition in the framework of the 

parton model one expects K-n to be much-larger than x: which is confirmed by the 

data. F4?hus one exp ects that for n > 4 the singlet structure function will behave 

essentially the same as the non-singlet structure function for typical hadronic 

targets. 

In terms of the effective coupling constant 

(8.66) 

the formulae (7,20b) and (8.33) can be written as follows 
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&$‘(n, Q*) q 6 ~~$ls 1 ;;(Q2) 1 dF+JS 
I;$?tQ*)) (8.67) 

M$n, Q2) = 6i2)Kn [G(Q2) Id’ I;,,(g(Q2)) + Gti$)K$ z(Q2) Id’ I;,n(?iQ2)) (8.68) 

where 

Ii2 .(Z) = 1 + & Ri2 n i = NS,+,- 
9 9 . (8.69) 

The quantities Ii2J-) ~1 are plotted in Fig. 35 as functions of a. The figure is 

presented mainly for illustration since the actual size of Ii2n(G) depends on the 

definition of A or equivalently of a(Q2). The curves in the figure correspond to= 

scheme for which 0.2 <i(Q2) < 0.5 for 2 < Q2 < 100 GeV* (see Section VII). 

We note the difference between i’ corrections to ttNS’l and I’-‘( components 

for low values of n which is due to mixing between quark and gluon operators. 

Furthermore the g* corrections to the I’+” contribution are generally larger than to 

the ‘t-1’ and “NS” contributions . This however does not spoil the perturbative 

expansion for the full singlet structure function due to the smallness of “i for 

large n and due to the large values of dy as discussed above. 
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E. Parton Model and Higher Order Corrections 

So far our discussion of higher order corrections was very formal. Al though 

the most straightforward tests of higher order corrections can be presumably done 

by using Eqs. (8.33) and (7.20b), it is sometimes useful to express these equations in 

terms of parton distributions. As we already remarked before, this cannot be done 

in a unique way (Kodaira and Uematsu, 1978; Altarelli, Ellis and Martinelli, 19781, 

and the functional form of the resulting “higher order parton model formulae” 

depends on the definition of the parton distributions. 

In order to illustrate this point, consider the moments of a non-singlet 

structure function which in the leading order is expressed through the moments of a 

non-singlet quark distribution A(x, Q2) as follows 

@(, Q2) = 6 
k ’ 

-dLS 
: g(k) Ns’ h(Q2) ‘n (8.70) 

vO 1 1 In - 
A2 

with 6(Nk: (k) being a charge factor; e.g. 6 NS = l/6 for F:P. 

The Q2 evolution of < A(Q2)>, is given by 

In QZ -d& 
< A(Q2)>, = < A(Q$, A2 - [ 1 Q2 

In o 
I? 

(8.71) 

where < A(Q~&, E Ay’(Qz)* 

If next-to-leading order corrections are taken into account we have first 
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+ E2(Q2) NS 
d”NS 

16~’ Bk,n I[ 1 ii2(Q2) 

i2(Q;) 
. (8.72) 

Next Eq. (8.72) can be expressed in terms of parton distributions and this can be 

done in many ways. Here we shall discuss only two examples: 

a) 
and 

b) 

MyS(n, Q2) = 6::~ A(q2)>F) 

MNS(n Q2) = 
k ’ 

-2( 2, NS l+-Bkn 
161~~ ’ I 

G <A(Q2) >(bt+ n k,-,(l, i+i2) 

(8.73a) 

(8.74) 

where < A(Q2)>(a) . is n just defined by Eqs. (8.72) and (8.73a) and< a(~~)>:) in the 

order considered reads as follows 

< A(Q2) >(b) = < A(Q2)>(b) 1 + 
[ g2(Q2) - i2(Q;)] 

n 0 n 161~~ 
(%$ -‘y;$+)][&&] d’s (8.75’ 

In the first example the structure function is totally expressed in terms of a quark 

distribution which has the Q” dependence different from that given by the leading 

order formula (8.71 ). It should be remarked, however, that the inclusion of all 
- 
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higher order corrections into the definition of parton distributions can only be done 

for one structure function, e.g. F2 as in Eq. (8.73a). The reason is that the parameters Bk n 
, 

depend on the structure function considered, and if the parton distribution is defined by 

using F2, the formulae for the remaining structure functions (Fl, F3) will involve 

explicit higher order corrections in addition to the parton distributions in question. 

In the second example the term which depends on the structure function has 

been factored out. Writing Eq. (8.74 ) as 

MF’(n, Q2) = < A(Q2)>no tFn(Q2) 

and using the convolution theorem of Eqs. (5.14-5.16) we obtain 

F;%, Q2) = j- 
1 

X 
dy o rs( ; , Q2)A(b)(y, Q2) 

(8.76) 

(8.77) 

The factor ok NS(x, Q2) can be interpreted as an elementary cross-section for 

scattering of a current off a quark with an effective Q2 dependent distribution 

A b) (y, Q2). This interpretation can be extended to other processes such as Drell-Yan, 

large pl processes, etc., with o different for different processes. Therefore in this 

formulation all measurable cross-sections are expressed as a convolution of 

universal quark distributions and process dependent (also structure function 

dependent) elementary parton cross-sections. This picture is at the basis of the 

perturbative QCD to be discussed briefly in Section IX. It should be remarked, 

however, that the parton distributions and the elementary parton cross-sections 

defined in this way are separately renormalization-prescription dependent and 

generally gauge dependent. These renormalization prescription and gauge 

dependences cancel in the final expression if the same gauge and renormalization 

scheme are used in the calculations of A (b) 2 (x, Q ) and o(x, Q 2 ). Since one can define 
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parton distributions in many ways anyhow, one should not worry about this 

renormalization prescription dependence of parton distributions discussed here. 

The only important thing is to define the parton distributions consistently in the 

same renormalization scheme for all structure functions and all processes. 

Equations (8.73a) and (8.74a) can be generalized to the singlet structure functions. 

In the case of definition a) one has (Altarelli, Ellis, Martinelli, 1978; Floratos, Ross and 

Sachrajda, 1979) 

M$n, Q2) = 6 (‘)<C (Q2)> (a) d.J n (8.73b) 

where <C (Q*) >(a) _ n has rather complicated dependence on Q*. Explicit expressions for 

<C (Q2) ,(a) n can be found in (Floratos et al., 1979). Notice that in this example all 

higher order corrections (including those from gluon distribution) have been absorbed in 

the definition of the singlet quark distribution. 

Here we shall discuss in detail only the singlet analog of Eq. (8.74) 

(Baulieu and Kounnas, 1978; Kodaira and Uematsu, 1978; Ellis, Georgi, Machacek, 

Politzer and Ross, 1979). For the discussion of the distributions of Eq. (8.73b) we 

refer the reader to the papers by (Altarelli, Ellis and Martinelli, 1978) and 

(Fl oratos, R oss and Sachrajda, 1979). Equation (8.75 ) is just the non-singlet 

formula (2.137). In order to derive Eqs. (2.138) and (2.139) we proceed as follows. 

Using Eqs. (8.29) and (8.2) we first obtain 

M$n, Q2) = An(p2)E2 

(8.78) 
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with An(p2) and &g, 9 defined by Eqs. (8.30) and (8.5)’ respectively. Next in 

analogy with Eq. (8.74 ) the moments <C(Q2),, and <G(Q2) >n are defined as 

follows (we drop the index b in what follows) 

[dQ*) >,,, < G(Q~)> n I E Anr,,2)$(g, 3 

and consequently using Eq. (8.3) for Q* = p2 we obtain 

M$n, Q2) = <C (Q2)>nC:n(l, g2) + <c(Q2)>,C$ .(l, g2) . Y Y 

(8.79) 

(8.80) 
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Notice that since $(g, 3 = 1 for Q2 = u2, the parton distributions defined by (8.79 ) 

are just the matrix elements of various local operators renormalized at u2 = Q*. It 

is now a simple matter to obtain Eqs. (2.138) and (2.139). In order to use some of 

the results of Section VIILB we write (putting u2 = QE) Eq. (8.79) as follows 

[ dQ2) >n, <G(Q2) >J = [ <C (Q;b,, <G(Q;) >J b ;I-l&g, $J fr-’ (8.81) 

and use 

[ 1 
d” 

- ii2(Q2) 
i2(Q;) 

0 

X 

-2( 2) h l* h 
1 - RQ u- v2u 

161~~ 
(8.82) 

where the matrix ?‘̂ v,“u is given by Eqs. (8.14)-(8.18). Inserting ( 8.82) into (8.81) 

and using Eqs. (4.30) and (4.31) for 6 and G-1 we are led to the formulae (2.138) and 

(2.139) which d escribe the Q2 evolution of <C (Q2) >n and <G(Q2)>,. Numerical 

values of the parameters which enter these formulae are collected for the MS 

scheme of Section VII in Table 2. In addition, g*/16 ~1~ 6 0 .03 for Q2 J‘ 5 GeV* and 

therefore the next-to-leading order corrections in Eqs. (2.138) and (2.139) are 

relatively small. Consequently the QL evolution of the parton distributions defined 

by Eq. (8.79)’ with g2 corrections calculated in the m scheme, should not be very 

different from the Q2 dependence predicted by the leading order expression of 
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Section V. It would be interesting in the future to invert Eqs. (2.138) and (2.139) to 
G 

obtain G(x, Q2) and X(x, Q2). The large value of the parameter K -+ for n = 4 and 

f = 4 is related to the previously discussed singularity at dy = d_” + 1 which appears 

for f z 3.8. The singularity in K G -+ is, however, cancelled by the factor multiplying 

KG+ in Eq. (2.141)’ and the resulting correction is small. We would like also to remark 

that due to properties (5.38)’ (5.39) and (X.42)’ Eqs. (2.138) and (2.139) satisfy energy 

momentum conservation. 

Al though the QL dependence of the quark and gluon distributions defined in 

the MS scheme does not differ very much from the leading order predictions, the 

input distributions for quark and gluon distributions which have to be taken from 

the data will differ considerably at low Q* and large x from those used in the 

-4J leading order phenomenology. The reason is that the parameters E;Sn and B2 n are 
Y Y 

large for large values of n. 

Finally as in the case of the non-singlet structure functions we can invert Eq. 

(8.80) to obtain 

F; (” Q*) = i ' dY [o;(; , Q2)x(y, Q2) + u ;(; , Q2)G(y, Q2) 
X 1 (8.83) 

where o$(G, Q2) is, except for the charge factor, equal to o ys$ , Q2), and 

o ;(; , Q2) can be interpreted as elementary cross-section for scattering of a 

current (y, W, 2) off a gluon with an effective Q2-dependent distribution G(y, Q2). 

So far nobody has done a detailed comparison of the higher order corrections 

to the singlet structure functions with the experimental data but such a comparison 

will be available in the near future (Field and Ross, 1979; Duke and Roberts, 

1979b). F41 Some applications of these definitions of the parton distributions (Eqs. 8.73a, b, 

8.74 and 8.80) in semi-inclusive processes are discussed by Altarelli et al. (1979b) and 

Buras (1979). 

F. More About Callan-Gross Relation 

In this section we shall express the longitudinal structure function FL(x, Q2) 

in terms of quark and gluon distributions. Combining Eqs. (7.18a) and (8.41) and 
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utilizing Zq. (4.43) we first obtain the following expression for the moments of 

FL(x, Q2) 

ML(n, Q2) = Mp’(n, Q2) + M$n, Q2) 

= GksA;S(Q;) 

where 

+ 6;A;tQ;) BL,n 
2 

8,JnQ 
A2 

+(-A;(Q~) BL,n 

f3,ln QZ 
A2 

lnQf 
A2 [ I Q2 

In o 
A2 

-d: 

[ 
lnQ1. 

A2 Q2 
In s2 

A 1 
-d; 

Bin = Btn+ BG 
Y Y Ln 

9 and BL G 
Y 
n and B L 

Y 
n are given by Eqs. (2.98) and (2.1201, respectively. 

Inserting Eq. (8.85 ) into (8.84 ) and using Eqs. (5.29-5.32) we obtain 

ML(n, Q2) = 

4J 
BL,n 

B,lnd 
A2 

M2(n, Q2) + 
BG 

Lyn 2 
B,InQ 

A2 

(8.84) 

(8.85) 

(8.86) 
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where the Q2 dependence of M2(n, Q2) and of < G(Q2),, is given in the order 

considered by the leading order formulae of Sections IV and V. As the reader may 

convince himself Eq. (8.86) can also be derived from Eqs. ( 8.77) and (8.83 ) by 

replacing there the indices k or 2 by the index L. 

Finally using the convolution theorem of Eqs. 

expressions for JI G bL n and B L n, as given in Eqs. (7.431, Y Y 

(5.14)-(5.16) and the explicit 

(8.56) and (8.571, we obtain 

-7 FL(x, Q2) = ’ 2 j- 
‘CiJ x2 

8olne ’ 
y -q 9 F2(y, Q2) + d (218f(l 

9 - ;)Y G(y, QL)J (8.87) 

A2 

In the case of four flavors &i2) = 6 for ep scattering and 6:’ = 1 for v 7 scattering Y . 

Equation ( 8.87) with 6 (2) 5 

60) = 
9 

= 18 agrees with Eq. (127) of (Al tarelli, 19781, and for 

8 
1 with Eq. (24) of (Kodaira and Uematsu, 1978) if we take into account that 

the definition of FL(x, Q2) in the latter paper differs from our definition by a 

factor x. 

It should be emphasized that the parameter A which enters Eq. (8.87) need 

not be the same as that obtained from the phenomenological applications of the 

leading order or next-to-leading order expressions for the Q’ evolution of the 

structure functions Fl, 2 F and F3 which do not vanish in the leading order. In fact 

the value of A in Eq. (8.87) cannot be meaningfully determined from experiment un- 

less 1/(1n2 Q2/A2) corrections to FL are computed. Therefore in comparing ( 8.87 ) 

with experiment we are free to choose A to be different from that extracted from 

phenomenological applications of asymptotic freedom equations for other structure 

functions. We do not think this point was realized previously in the literature. 
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Experimentally the formula (8.87) is consistent with the ep data (Riordan et 

al., 1975) for x < 0.4 (Hinchliffe and Llewellyn-Smith, 1977a) but disagrees with 

these data for I arge x (De Rujula et al., 1977a). The predictions of the theory for 

large x lie systematically below the data. This is also confirmed by the recent 

analyses (Bodek et al., 1979 and Mestayer, 1978). The disagreement between 

theoretical predictions and the data for FL might not be a problem for QCD, 

however, and could be due to our neglect of higher twist F42 operators, non- 

perturbative effects, etc., which are present in QCD but are difficult to calculate. 

In particular it has been suggested by (Schmidt and Blankenbecler, 1977) that the 

diquark systems in the proton could be responsible for the observed large values of 

FL at large x. Recent phenomenological applications of this idea can be found in the 

paper by (Abbott, Berger, Blankenbecler and Kane, 1979). Certainly the longitudinal 

structure functions deserve further study. 
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IX. ASYMPTOTIC FREEDOM BEYOND DEEP-INELASTIC SCATTERING 

A. Preliminaries 

So far our discussion of asymptotic freedom effects concentrated on deep- 

inelastic scattering. In the past year there has been a lot of progress in 

understanding the structure of asymptotic freedom in other than deep-inelastic 

processes. For completeness we shall briefly review here some of the results of 

these studies. We shall only discuss basic ideas and present results of various 

calculations without confronting them with the data. 

Historically, the study of asymptotic freedom in the inclusive deep-inelastic 

scattering began in the framework of the formal approach of Section IV and only in 

the last two years have calculations been made in the intuitive approach of Section 

V and, in particular, in the framework of so-called perturbative QCD, which we 

have not discussed so far. In the case of semi-inclusive processes, as for instance 

massive u-pair production, or processes in which hadron momenta are measured in 

the final state, progress proceeded in the reverse order. Most of the calculations 

were first done in the framework of perturbative QCD and only recently have 

studies been made to develop a technique similar to the powerful methods of 

operator product expansion and renormalization group equations. 

As we discussed in detail in this review, the operator product expansion (OPE) 

allows us to identify systematically the dominant contributions to the moments of 

the structure functions at large Q2 and to express them in terms of a sum of 

products of (perturbatively) calculable coefficient functions and (by present 

methods) incalculable matrix elements of certain operators taken between 

hadronic states. The Q2 dependence of the coefficient functions can then be found 

by means of renormalization group equations. In other words the OPE assures the 

factorization of non-perturbative pieces (matrix elements of local operators) from 
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perturbatively calculable pieces (coefficient functions). We would like to stress 

that this factorization is true to all orders in the renormalized coupling constant gL 

and in all logarithms of Q’ (leading, next-to-the leading, etc.). Such a proof has 

been missing for semi-inclusive processes and the strategy (Politzer, 1977a, b; 

Sachrajda, 1978a, b) has been to calculate these processes in perturbation theory in 

g2 and to show that the non-perturbative pieces (mass singularities) can be factored 

out and absorbed in the (by present methods) uncalculable wavefunctions of the 

incoming and the outgoing hadrons. There have been very many papers on this 

subject, and it is impossible to quote all of them here. An incomplete list of 

theoretical papers involved with the question of factorization includes the works by 

(Politzer, 1977a, b; Sachrajda, 1978a, b; Dokshitser, Dyaknov and Troyan, 1978; 

Llewellyn-Smith, 1978b; Mueller, 1974, 1978; Libby and Sterman, 1978; Kazama and 

Yao, 1978’1979; Amati, Petronzio and Veneziano, 1978a, b; Ellis, Georgi, Machacek, 

Politzer and Ross, 1978a, 1979; Gupta and Mueller, 1979; Kripfganz, 1979; Frazer and 

Gunion, 1979a, b). References to phenomenol ogical studies of semi-inclusive 

processes can be found for instance in the reviews by (Field, 1979; Hwa, 1978; 

Berger, 1979; Halzen, 1979). 

In the theoretical papers above one can find demonstrations of all order 

proofs of factorization (Ellis, et al., 1978a, 1979; Amati, et al., 1978a, b; Libby and 

Sterman, 1978; Mueller, 1978) and a formulation of the whole study of semi- 

inclusive processes similar to the formal approach of Section IV (Gupta and 

Mueller, 1979). 

Before we proceed with our review let us illustrate the idea of factorization 

in the framework of perturbative QCD with the example of deep-inelastic 

scattering (Politzer, 1977a). 
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B. Factorization and Perturbative QCD 

We consider the diagrams of Fig. 36 contributing to the photon-quark 
2 F43 scattering to order g , and as in the calculations of Section VII we take the 

incoming (massless) quarks slightly off-shell (p2 < 0). The result is most simply 

expressed in terms of moments in x (Bjorken variable), and we obtain 

i9.1) 

where AZ stands for the empty (“bare”) blob in Fig. 36 and, as in Eq. (7.271, 

r = T;Z,)PNS . n 9 
The result (9.1) is not very useful for various reasons: 

i) it is singular for p2-+ 0; 

ii) the constants r n depend on our assumptions about the target, i.e., the 
3 

incoming quark. We could, for instance, perform the calculation with pL = 0 but 

keep the quark mass m f 0. In that case we would obtain 

(9.2) 

where Fn f rn. In general rn or Fn are also gauge dependent. This is exactly the 

same problem which we discussed in Section VIII, but we mention it here again 

because it also enters the calculations of Drell-Yan and other semi-inclusive 

processes as we shall see below. Of course we know already how this problem is 

solved (see Section VIII), and we shall leave it for a moment. 

The problem i) is solved by first rewriting Eq. (9.1) as follows (we drop 

constant terms) 
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0 
Mn = A; l+~yNslnZZ 

16~r~ 2 P2 
I (9.3) 

and then absorbing the p2 dependent singular factor into A”,. We obtain therefore 

%n 
Mn q An(u2) l-g- 2 ‘NS ln $ 

16.rr2 2 v2 
(9.4) 

where u is an arbitrary scale which we introduced to protect the Q2 dependent 

factor from the singularity at p2 = 0. 

In the parton language we can interpret An(u2) as the moments of a parton 

distribution at Q2 = u2. In the formal language this is just the matrix element of 

Eq. (7.29). The second factor on the r.h.s. of Eq. (9.4) describes how the moments 

Mn behave for Q2 f u2. Notice that this factor is free of any singularity for p2 + 0. 

In formal terms it is just the coefficient function calculated to first order in g2 

(keeping only the leading logarithm). This factorization of singular (non- 

perturbative) terms from well-behaved terms can be proven to all orders in 

perturbation theory in g2 (see references above). When all orders in g2 are summed 

and in each order only leading logarithms are kept, then the leading order 

corrections of asymptotic freedom discussed in the previous sections are obtained. 

Summing next-to-leading logarithms to all orders in g2, one obtains the next-to- 

leading order corrections of asymptotic freedom of Sections VII and VIII, and so on. 

C. Lessons from Deep-Inelastic Scattering 

In our presentation of asymptotic freedom effects in processes other than 

deep-inelastic scattering we shall discuss both the leading and next-to-leading 

order corrections, and it is useful to summarize the lessons which we gained from 

the study of deep-inelastic scattering. They are as follows: 
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a) In the leading order there is no reason that the numerical values of the 

scale parameter A should be the same for different processes. 

b) If next-to-leading order effects are taken into account and the effective 

coupling constant defined universally for various processes,then it is justified to use 

the same value of A in different processes (here we tacitly assume that still higher 

order corrections Q&(Q2)) are small). 

c) The definition of parton distributions is not unambiguous beyond the 

leading order. Therefore in comparing the parton distributions extracted from 

various processes one has to make sure that the definition of parton distributions is 

common to all processes. 

d) dne has to make sure that all renormalization prescription-dependent parts 

of a physical expression are calculated in the same scheme, so that at the end a 

renormalization prescription-independent answer is obtained 

e) One has to check that the final answer for the coefficient functions does 

not depend on the (in principle arbitrary) assumptions about the gluon and quark 

target us&d in perturbative calculations to extract the coefficient functions. 

We shall keep these lessons in mind while discussing various processes. We 

begin our presentation with e’e- annihilation. 

D. e+c’ + hadrons 

This process has been studied in the framework of asymptotically free gauge 

theories already a long time ago (Appelquist and Georgi, 1973; Zee, 1973). 

Therefore we only quote the result and discuss it briefly. 

Consider the ratio 

(9.5) . R- o(e+e- + hadrons) 
g(e+e- + lJ+lJ 
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In the simple parton model and in QCD one obtains for Q2 : E: m+ oo . . 

Ra = 3 1 ei2 
i 

(9.6) 

where 3 is the number of colors, ei are the charges of the quarks and the sum runs 

over the flavors. The fact that R approaches a constant value is a consequence of 

the lack of renormalization of the conserved electromagnetic current. For finite 

values of Q2 there are calculable asymptotic freedom corrections to Eq. (9.6), and 

the formula for R reads as follows 

R = R= 
C 

1 + i2(Q2) b + ii%& b + . . . 
16?t2 ’ (16n2)2 2 1 . (9.7) 

The coefficient bl has been calculated by (Jost and Luttinger, 1950; Appelquist and 

Georgi, 1973; Zee, 1973) and is given as follows 

bl = 4 . (9.8) 

Neglecting for the moment 2(Q2) corrections and using the leading order 

-2 2 expression for g (Q ) (Eq. 2.50) one obtains 

(9.9) 

bl is positive and, therefore, R, will be approached from above. In Fig. 37 R is 

plotted as a function of f- Q2 for f = 4 and -~two values of A. The contribution of 

the heavy lepton (AR = 1) have been added there. The experimental values of R range 

at Q2- r - 5 GeV from 4.5 to 5.0 (see review by Feldman, 1979). The CI~TVSS in Fig. 37 
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are shown only to illustrate the size of the second term in Eq. (9.9). A careful corn- 

parison of Eq. (9.9) with the data involves smearing over the resonances and inclusion 

of threshold effects. We refer the interested reader to the papers by (Poggio, Quinn 

and Weinberg, 1976; Moorhouse, Pennington and Ross, 1977; Barbieri and Gatto, 1977; 

Shankar, 1977) for details. Recalling lesson a) there is no reason why the value for 

A extracted from the data on the basis of Eq. (9.9) should be the same as that 

obtained from the leading order analysis of deep-inelastic scattering. A meaningful 

comparison of QCD effects in e+e- annihilation with those expected in deep- 

inelastic scattering can, therefore, only be made once the 2 corrections are taken 
-2 2 into account as in Eq. (9.7). Using Eq. (2.88) for g (Q ) calculated to two loops, we 

obtain from (9.7) 

R =R co 
bl 

@,ln$ 
A2 

2 

81 
In In Q- 

A2 
“‘2 - 

0 In’@ 
A2 

L 
+ 

i3: ln2 Q! 
A2 

+ . . . I . (9.10) 

Of course the exact value for b2 in the expansion in Eq. (9.10) depends on the 

definition of g2(Q2) or, equivalently, on the definition of A. Resealing A to A’ with 

A = KA’ (9.11) 

changes the last term in Eq. (9.10) to 

b2 +Bobl In K’ 

(9.12) 
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with A replaced by fl’ in the first two terms. The calculation of b2has been recently done 

by (Dine and Sapirstein, 1979; Ross, Terrano and Wolfram, 1979; Celemaster and Gonsalves, 

1979) with the result b2 = 89.3, 24.3, -27.2 for h4S, !% and MOM schemes, respectively. 

Since i2/16n2 is 0 (0.03) for Q2 z 30 GeV2 we observe that 2 corrections to R are 

relatively small. 

E. Photon-Photon Collisions 

It is well-known that photon-photon inelastic collisions in e+e- storage rings 

become an increasingly important source of hadrons as the center-of-mass energy 

is raised (Brodsky, Kinoshita and Terazawa, 1971; Terazawa, 1973; Budnev et al., 

1975). Whereas the e+e- annihilation cross-section decreases quadratically with 

energy, the cross-section for e+e- + e+e- + hadrons increases logarithmically with 

energy. The dominant contribution to the latter cross-section arises from the 

annihilation of two nearly on-shell photons emitted at small angles to the beam. 

Here we shall study the case in which one of the virtual photons is very far off- 

shell (large Q2) and the other one is close to the mass shell (small p2) as shown in 

Fig. 38. 

The subprccess 

Y +Y -f hadrons (9.13) 

can be viewed as deep-inelastic scattering on a photon target. The corresponding 

virtualCompton amplitude is shown in Fig.38b,and as in the standard deep-inelastic 
.., 

scattering one can introduce structure functions as Fi, this time photon structure 

functions. In the early days process (9.13) was studied in the framework of the 

Vector Dominance Model (VDM) and predictions similar to that for standard deep- 

inelastic scattering have been obtained, i.e., Bjorken scaling in the simple parton 

model and logarithmic scaling violations in the framework of asymptotically free 

gauge theories (Ahmed and Ross, 1975a). It turns out, however, that in addition to 

the VDM contributions there are contributions to photon-photon scattering in which 

the photon behaves as a point-like particle (Walsh and Zerwas, 1973; Kingsley, 

1973). In the parton model these contributions are represented by the box diagram 
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of Fig. 38~. The box diagram contribution can not only be exactly calculated, but at 

large values of Q2 increases as In Q2 and dominates over the (incalculable in 

perturbation theory) vector dominance terms. The latter are suppressed by powers 

of In Q2 as in the standard deep-inelastic scattering. Neglecting VDM contribu- 

tions, the parton model result for the photon structure function F:(x, Q2) for large 

Q2 has the form 

F;(x, 4’) 1 PM = 2 2P(Xh Q2 (9.14) 

where a is the electromagnetic coupling constant and p(x) is given as follows 

p(x) = 8 6y xPqG(x) (9.15) 

Here P ,,(x) is the familiar splitting function of Eq. (2.57) which expresses the 

probability of finding a quark in a gluon (now photon). Furthermore 

6 31 4 y= iei (9.16) 

where the sum runs over the flavors and ei are the quark charges. “3” stands for 

the number of colors. 

It has been pointed out by (Witten, 1977) that there are asymptotic freedom 

corrections to the parton model result of Eqs. (9.14) and(9.15). Witten calculated 

these corrections in the leading order of asymptotic freedom and his calculation 

has recently been extended to the next-to-leading order (Bardeen and Buras, 

1979a). All these corrections are independent of the unknown matrix elements of 

local operators in contrast to the case of standard deep-inelastic scattering, and 

can be exactly calculated. Moreover, at sufficiently large values of Q2 these 

exactly calculable ter,ms are more important than the VDM contributions. 
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Therefore the process under consideration is, from a theoretical point of view, an 

excellent place to study properties of higher order corrections. The two 

calculations above have been done using operator product expansion and renormali- 

zation group methods. Witten’s result has been rederived last year by Llewellyn- 

Smith (1978~) and recently by (Frazer and Gunion, 1979) in the framework of 

perturbative QCD. Furthermore, the process in question has been studied in the 

intuitive approach of Section V (De Witt, Jones, Sullivan, Willen and Wyld, 1979; 

Brodsky, De Grand, Gunion and Weis, 1978, 1979P4!n what follows we shall present 

in more detail the formal approach to photon-photon scattering. 

The formal approach to photon-photon scattering has been first discussed by 

(Witten, 1977). The moments of the photon structure function Fl(x, Q2) are given 

as follows 

s1 
0 

dx x”-‘F;(x, Q2) = 1 C; n 
i 9 

g2 , g2, 
IJ 

(9.17) 

where c1 = e2/4n is the electromagnetic coupling constant. The sum on the r.h.s. 

of Eq. (9.16) runs over spin n, twist 2 operators such as the fermion non-singlet 

operator ONs, singlet fermion and gluon operators, 0 
4) 

and OG, and the photon 

operator 0 y. The latter operator which is not present in the analysis of the deep- 

inelastic scattering off hadronic targets, is the analog of the gluon operator OG 

with the non-abelian field strength tensor G 
aB replaced by the electromagnetic 

tensor F 
ClB (see Eq. (3.57)). As noted by Witten, Oy must be included in the 

analysis of photon-photon scattering. The reason is that, al though the Wilson 

coefficients Ci are O(a), the matrix elements <y ) 0” 1 y> are O(1). Therefore the 
Y 

photon contribution in Eq. (9.17) is of the same order in a as the contributions of 

quark and gluon operators. The latter have Wilson coefficients O(1) but matrix 

elements in photon states O(a). We want to evaluate Eq. (9.17) to lowest order in o 

but to all order in g. In lowest order in ~1 
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i = +,G,NS 

where the functions on the r.h.s. of Eq. (9.18) are the familiar Wilson coefficients 

which we discussed in Sections II-VIII. (Recall that the coefficient functions do not 

depend on the target.) Therefore the first three terms involving hadronic operators 

will be suppressed by powers of logarithms except for n = 2 due to the vanishing of 

the anomalous dimension of the hadronic energy momentum tensor. Moreover, the 

matrix elements of hadronic operators in photon states cannot be calculated in 

perturbation theory. In the language used above the three terms in Eq. (9.17) 

involving hadronic operators belong to Vector Dominance contributions. We are, in 

fact, mainly interested in the coefficient function of the photon operator, whose 

matrix element between photon states is known, 

(9.18) 

<yIoylY’ = 1 . 

C:,n(Q2/u2, g2, ~1) satisfy the following renormalization group equations 

(9.19) 

a 
l$i 

Qf 2 29g ,a i = + ,NS,G,y (9.20) 
1-1 

where y.. 
11 

are the elements of the 4 x 4 anomalous dimension matrix which has in 

lowest order in c1 the following structure 

(9.21) 
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Here Tr(g’) is the standard hadronic anomalous dimension matrix of Eq. (4.22) 

extended by one column and one row to include the anomalous dimension of the 

non-singlet operator. 
-f 
Kn(g2, a) is a three component vector 

kn(g2, 03 = n 2 K,$g 7 a), K;(g’, a), Kis(g2, ~1) 1 
which represents the mixing between the photon operator and the remaining three 

operators. The components Kn 
1 

can be calculated in perturbation theory and have 

the following expansion 

e2 K;(g’, a) = - - K&n .‘g2 K(l)$ 
16~? j 2 j 

j = $,NS 

(167r’) 
(9.23) 

(9.22) 

and 

K;(g2, a) = _ 4 Kt)‘” (9.24) 
(16~~) 

Examples of diagrams necessary for the calculation of the coefficients Kppn, (l),n K. 

and Kt)yn 
I I 

are shown in Fig. 39. 

Because of the mixing between the photon operators and hadronic operators 

the coefficient function Cg,n(Q2/u2, g2, a) depends on the matrix qt(g’) and the 

coefficients ?$,(I, g2), Cyfn(l, 8’) and C!$n(l, g2), in addition to the mixing 

anomalous dimensions K)and the coefficient function C $,,(l, g2, a). The resulting 

expression for the moments of F:(x, Q2) is as follows 

dx x”-‘F;(x, Q2) = a2 an In 2 
0 I2 

+ “an In In (9.25) 

where the terms O(l/(ln Q2/x2)) include the VDM contributions. 
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The constants an have been calculated by (Witten, 1977) and the parameters 

gr, and bn by (Bardeen and Buras, 1979a). The a, depend on one-loop anomalous 

dimensions and one loop B functions while the zn depend, in addition, on the two- 

loop contributions to the B functions. Finally, the En depend on the two-loop 

anomalous dimensions and the one-loop contributions to the Wilson coefficient 

functions, in addition to the renormalization group parameters on which “an and an 

depend. Analytic expressions for an, “a,., and En and their detailed derivations can 

be found in the original papers. The numerical values for these parameters are 

collected in Table V. The numerical values of E,.., depend on the definitions of the 

scale parameter X. The Kn in Table V are for the= of Section VII. Notice that 

we do not give the values of b2, which involves the perturbatively uncalculable 

photon matrix element of the hadronic energy momentum tensor. 

Remembering lesson b) of Section C we take for x the value of 0.5 GeV which 

we have extracted from deep-inelastic scattering in Section VII using the same 
__. 

definition for A. Equation (9.25) is plotted in Fig. 40 for various values of n on Q2. 

In Fig. 40 L.O. stands for the first term in Eq. (9.26) and PM stands for the parton 

model result of Eq. (9.15). We conclude that asymptotic freedom effects suppress 

the photon-structure function at large values of n or equivalently large x and that 

this suppression is enhanced by higher order corrections as compared to the leading 

order result. A similar result for the higher order corrections to the moments of 

Fz(x, Q2) is obtained if g2(Q2) is defined by momentum subtraction. In that case 

the parameters b,, are replaced (Celemaster and Gonsalves, 1979) by 

brnorn = 6 
n n + a,[ 1.541 (9.26) 
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and x = 0.5 GeV by Amom = 0.85 GeV as extracted in this scheme from deep- 

inelastic scattering (see Section VI1.I-I). More elaborate comparison of higher order 

corrections with the I eading order result and the higher order corrections in deep- 

inleastic scattering can be found in the paper by (Bardeen and Buras, 1979a). 

For recent reviews of the photon-photon physics in connection with QCD 

ideas we refer the interested reader to the papers by (Llewellyn-Smith, 1978c; 

Brodsky, et al., 1978; Brodsky, 1978; Kajantie, 1979; Koller, Walsh and Zerwas, 

1979; Hill and Ross, 1979). In particular Hill and Ross discuss heavy quark mass 

effects in photon-photon scattering which turn out to be important. 

F. Semi-inclusive Processes in QCD 

1. Preliminaries 

We shall now turn to the presentation of the basic structure of QCD formulae 

for semi-inclusive processes. To this end it will be useful to introduce certain 

notation which we shall illustrate with the familiar deep-inelastic scattering. 

Consider a photon of momentum q which scatters off a parton of momentum p. If 

P is the momentum of the hadron to which the parton in question belongs then we 

can introduce the following variables 

d- 
x = 2P.q 

Z=& . 

and 5, the fraction of the hadron momentum carried by the struck parton. 

(9.27) 

(9.28) 

The deep-inelastic photon-hadron cross-section can then be written in QCD as 
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u H(x, Q2) = 1 J dx”JdS&(x 
j 

- “XS )u~(~, Q2) ’ 5 fr(S, Q2) 1 

= c il 
j x 

‘+ 0 ;f, Q2) [ 5 f;( 5, 4') 1 . (9.23) 

Here o j 
P 

is the photon-parton cross-section and f .H * 
I 

IS the distribution of partons of 

type j in the hadron. The sum runs over all types of partons, i.e. quarks and gluons. 

Eq. (9.29) just represents Eqs. (8.77) and (8.83). Eq. (9.29) is illustrated in Fig. 41. 

In the leading order of asymptotic freedom 

u;(x, Q2) = I .fs (1 - “x) j =a5 

(3.30) 
1 0 j=G 

and 

4 fp(S, Q2) f Sqj(s, 4’) or SClj(s 3 4’) (9.31) 

with Q2 dependence given by Eqs. (2.52-2.54). Inserting Eqs. (9.30) and (9.31) into 

(9.29) we obtain the standard result 

oH(x, Q2) = 1 e? [ Xqj(X, Q2) + X4j(X, Q2)l 
j ’ 

. (9.32) 

which is also true in the simple parton model if QL is neglected. If next-to-the- 

leading order corrections are taken into account the following things happen 

i) there are g2(Q2) corrections to the photon-quark cross-sections of Eq. 

(9.30); 
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ii) the Q2 dependence of quark distributions is modified (see Eqs. 2.137-2.139); 

iii) the photon-gluon cross-section, which is of order g2(Q2), also enters the 

final formula for aH(x, 4’). 

As discussed extensively in Section VIII the points i)-iii) are related to each other. 

For instance the explicit g2(Q2) corrections to various parton cross-sections depend 

on the definition of parton distributions beyond the leading order. 

In what follows we shall briefly discuss QCD formulae for semi-inclusive 

processes, which will turn out to have a structure similar to that of Eq. (9.29). 

2. Fragmentation functions 

In addition to quark distributions, extensively discussed in previous sections, 

important quantities in the study of semi-inclusive processes are the fragmentation 

functions (Feynman, 1972; Field and Feynman, 1977 ) which describe how a parton 

decays into a final hadron. The best process (at least from a theoretical point of 

view) to study these functions is the semi-inclusive e+e- annihilation in which a 

single hadron is detected in the final state: 

e+e- -t h(P) + anything 

This process is shown in Fig. 42. 

The relevant variables are, in analogy with Eqs. (9.27) and (9.28), 

(9.33) 

(9.34) 

and 

2 = 23is 

Q2 
(9.35) 
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One also introduces 5 which this time measures the fraction of the parton 

momentum carried by the hadron in the final state. 
4lTo; 

The cross-section for process (9.33) can be written in QCD (in units of 3 - [ 1 34’ 
1 

as follows (Georgi and Politzer, 1978b) 

’ dE -j(= Q2) C $(5, Q2)1 -pP~’ . (9.36) 

HereGj * p IS the cross-section for the production of the parton j and D:(c ,Q2) is the 

fragmentation function which measures the probability for a parton j to decay into 

a hadron h carrying the fraction < of the parton momentum. Let us recall that in 

the simple parton model (PM) 

I 

j=q,i 
,j = 

P 
0 j=G 

and the fragmentation functions do not depend on Q2. Consequently one obtains 

a”$d /PM = zDh (z) + z& (z) 
qj 4j 3 

(9.37) 

(9.38) 

In QCD the fragmentation functions acquire a QL dependence which has been 

studied by various authors (Georgi and Politzer, 1978b; Sachrajda, 197833, Dokshitzer, 

Dyakanov and Troyan, 1978; Owens, 1978; Uematsu, 1978; Mueller, 1978; Ellis et 

al., 1978)r4&e quote only the results of these studies and refer the reader to the 



-204- FERMILAB-Pub-79/17-THY 

papers above for details. In the leading order of asymptotic freedom, or 

equivalently by summing the leading logarithms to all orders in g 
2F47 

formula (9.38) is 

unchanged except that the fragmentation functions depend on Q2. The following 

integro-differential equations analogous to Eqs. (2.52-2.54) determine the Q2 

evolution of the fragmentation functions 

dDh CL2 ld 
f [ D$y, t)Pqq(;) + 2f I&, t)PGq$j 3 dtC (z, t) = + i, 

(9.39a) 

(9.39b) 

dDh 
$,z, t) = * l,i + [ D;(y, tPq& + D$y, t)P& 1 (9.39c) 

where t = In Q2/ u2. Here 

Diij(z, t) q D; (z, t) - Dh (z, t) 
i qj 

(9.40) 

is a non-singlet fragmentation function and 

D,h(z, t) - 
“[ 

D; (z, t) + + (z, t) 
i i i 1 (9.41) 

is the singlet fragmentation function. Furthermore, Dk measures the probability 

for a gluon to decay into a hadron h carrying a fraction z of gluon momentum. The 

functions Pij are exactly the “splitting functions” of Eq. (2.56)-(2.59). Notice 

however that PCs and PqG have been interchanged relative to Eqs. (2.53) and (2.54). 
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The structure of Eqs. (9.39) can be easily understood (see Fig.43). The process of 

obtaining hadrons from a given quark can proceed in three ways. The quark can frag- 

ment directly into hadrons or fragment into them after emission of a gluon. These 

two processes correspond to the first term in Eq. (9.39b). The second term in Eq. 

(9.39b) corresponds to the situation in which the quark emits a gluon, which 

subsequently fragments into hadrons. Similarly one can interpret Eq. (9.39~). 

FromEqs. (9.39) it is a simple matter to derive the equations 

of the fragmentation functions, which are defined analogously to 

quark distributions, e.g. 

1 
< D;(Q2)>n = j- dz z”-‘D;(z, 4’) 

0 

for the moments 

the moments of 

(9.42) 

The moment equations for the fragmentation functions are obtained from Eqs. 

(2.84)-(2.86) by making there the following replacements 

(9.43) 

and 

(9.44) 

an remain unchanged and the anomalous dimension matrix is, as before, given by 

Eq. (2.79). One can check that due to the properties (5.10) of the splitting 

functions the momentum sum rule 

1 
1 j- zD; (z, 4’) = 1 
h0 i 

(9.45) 

and an analogous sum rule for the gluon fragmentation function are satisfied. 
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In order to solve Eqs. (9.39) the values of the fragmentation functions at some 

value of Q2 = Qz are needed. As in the case of quark distributions, they have to be 

taken from the data. Once they are given one can find fragmentation functions at 

other values of Q2 by solving (9.39) numerically. Such an exercise can be found in 

the paper by (Field, 1979). The pattern of scaling violations in fragmentation 

functions is predicted to be very similar to that found in quark distributions in spite 

of the interchange of the “non-diagonal” splitting functions P 
w ‘Gq Or 

equivalently y $2 and y$$. This is not surprising since for n > 2 mixing between 

quark and gluons is very weak and the interchange of the functions in question 

irrelevant. It should be of course kept in mind that, although the patterns of 

scaling violations in fragmentation functions and parton distributions are very 

similar, the boundary conditions to Eqs. (2.53-2.54) and (9.39) as determined from 

the data are different and so arethe-functional forms of the Q2 dependent- parton 

distributions and fragmentation functions. Before presenting the structure of next- 

to-leading order QCD corrections to process (9.33) let us briefly discuss the 

question of factorization of mass singularities. 

Consider the diagrams of Fig. 44 which contribute in order gL to the cross- 

section G,(z, Q2)F4w s in the example of Section 1X.B the quarks are assumed to be 

massless and slightly off-shell. For the moments of Z,(z, Q2) defined by 

Z,“(Q’, = j- 
1 

dzz 
0 

n-2:&, Q2) 

we obtain 

2 
-$yl,$nln% + u 

-P n )I 

(9.46) 

(9.47) 
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where Vz stands for the empty (“bare”) blob in Fig. 44, yiin is the standard non- 

singlet anomalous dimension and un are constant numbers analogous to the m’s of 

Eq. (9.1). As in Eq. (9.1) also here there is a mass singularity for p2 + 0 and un 

depends on the assumption about the quarks. For m2 f 0 and p2 = 0 a different un 

would be obtained. Equation (9.47) can be rewritten as follows 

+uf))] [ I+$(-$y$J*n$ +u~))] (9.48) 

where u2 is a scale and 

&I) + p = u . n n n (9.49) 

Combining the first two factors on the r.h.s. of Eq. (9.48) we obtain 

Zh(Q2) = V(u2) n n (9.50) 

In the parton language we can interpret V,(p’) as the moments of the 

fragmentation function at Q2 = u2. In the formal language of (Mueller, 1978), 

Vn(u2) is an analogue of the matrix element of local operator and is called the 

time-like cut vertex. In the same language the matrix elements of local operators 

are called space-like cut vertices. The second factor on the r.h.s. of Eq. (9.50) 

which is free of any singularity as p2 + 0 is the analogue of the coefficient 

function. This time a coefficient function of the time-like cut vertex in an expansion 

similar to the operator product expansion. 

This factorization of singular (non-perturbative) terms from well behaved 

terms which can be calculated in perturbation theory can be proven to all orders in 
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g2 and in all logarithms (Ellis et al., 1978, 1979; Amati et al., 1978a, b; Mueller, 

1978). 

(2) (1) Notice that through Eq. (9.49) un depends on un or equivalently on the 

normalization of the cut vertex at p2 = p2. Different renormalization schemes will 

(2) therefore lead to different values of un . As in the case of deep-inelastic 

scattering, also here this renormalization prescription dependence will be cancelled 

by that of the two-loop anomalous dimensions of the cut vertices when the full Q2 

evolution of the fragmentation function to all order in g2 and in the first two 

orders in E2 is calculated. We observe, therefore, that the study of the next-to- 

leading order corrections to the Q2 evolution of the fragmentation functions 

proceeds in an analogous way to that for quark distributions. The structure of the 

formal and intuitive formulae (beyond the leading order approximation) for the 

process (9.33) is very similar to that presented in the previous sections for deep- 

inelastic scattering. Questions of definitions of fragmentation functions, of the 

definition of z2(Q2) and of the cancellation of renormalization-prescription 

dependences also arise here. Consequently also the comments i)-iii) made after Eq. 

(9.32) also apply toEn(z, 4’) as given in Eq. (9.36). 

Eq. (9.50) can be rewritten as follows 

L;; =<D(Q*)‘, 1 + “(2) g2 
16~’ n 1 

where 

<D(Q*)>n = Vn(u2) ’ ‘NS 
O,n 2 

1 - 5 7 lnQ2 
161~ .’ P 1 

(9.51) 

(9.52) 

are the moments of the fragmentation functions and 
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(9.53) 

are the moments of the cross-section for quark production calculated to order g2. 

When all orders in g2 -2 2 and the two first orders in g (Q ) are taken into account, 

<D(Q’) >,., acquires the full Q2 dependence with two-loop anomalous dimensions of the 

cut vertices and the two-loop B function included. Furthermore, in Eq. (9.53) g2 is 

h . replaced by g2(Q2). We recall once more that, although Gn is unambiguous, the 

Mh separation of a, into the fragmentation function and the cross-section for parton 

production is arbitrary beyond the leading order. 
-2 2 The full study of g (Q ) corrections to the process e+e- + h + anything has not 

yet been discussed in the literature. In particular, it is not known whether the two- 

loop anomalous dimensions for time-like cut vertices are the same as those for 

space-like cut vertices (I ocal operators). 

3. Drell -Y an and semi-inclusive deep-inelastic scattering 

In the simple parton model, parton distributions and parton fragmentation 

functions are the building blocks of any expression for inclusive and semi-inclusive 

processes. These building blocks do not depend on the process, although in 

different processes they enter in different well-defined ways. Thus if we can 

extract all parton distributions from deep-inelastic processes and fragmentation 

functions from e+e- annihilation, then the cross-sections for other processes such 

as the Drell-Yan process (Drell and Yan, 1971), semi-inclusive deep-inelastic scat- 

tering, etc. can be predicted. 

We have seen that, in QCD, parton distributions and fragmentation functions 

acquire a Q2 dependence, and it is of interest to ask whether the QCD predictions 

for semi-inclusive processes amount to using these Q2 dependent functions in the 
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parton model formulae for the processes in question. This has been studied by 

many authors during the last year, in particular by (Politzer, 1977a; Sachrajda, 

1978a, b; Dokshitser, Dyakanov and Troyan, 1978; Llewllyn-Smith, 1978b; Amati et 

al., 1978a, b, c; Ellis, Georgi, Machacek, Politzer and Ross, 1978, 1979; Gupta and Mueller, 

1979; Buras, 1979). In what follows we shall present the formulae for the two processes 

eH + e + h + anything , (9.54) 

and 

HlH2 + u+u- + anything (9.55) 

in the leading order and next-to-leading order of asymptotic freedom. Subse- 

quently, we shall briefly discuss the basic features of these formulae which are 

characteristic for all QCD expressions for semi-inclusive cross-sections. 

The cross-sections for the processes (9.542 and (9.55) are given in QCD as 

follows: 

GHh(x, z, Q2) = 1 ./. d”zdx;lSldS+ (x - x”S,)&(z - tc,) 
j,k 

z$(:, 2, Q2) $fjH($, Q2) 1 [ c2D;(5,, Q2)l 

= ‘+ 1,l d%$‘k(~,<,Q2) [$fjH(S,, Q2) 11 52D;(5,, 4’) 1 (9.56) 

for process (9.54) and 
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do 4~; r dxl dx2 
-- 

iq - 
J -4 

34’ ‘1 
x2 offH2(Xl’ 37 x129 Q2) (9.57) 

with 

~H~H~(x~, ~29 ~129 4’) = 7 j fi1G2d51d526(xl - “xl6 l)6(x2 - Z2<,) 
j,G 

jkCx x” j; cJ p 1’ 2’ 12’ Q2)[ SlfjH1( 51, Q’)] [C 2fr2(C2, Q’)] (9.58) 

= 1 j-l dA j- ’ dS2 obk ( z ,; ,$, Q2) [SlfJ?Cl, Q’)] [C2f;2(S2, Q2g 
j,k x1 51 x2 52 2 

for process (9.55). In Eq. (9.57) oE is the electromagnetic coupling constant. The 

processes are shown schematically in Figs. 45 and 46. Variables xi, “xi, 5 i in Eqs. 

(9.57) and (9.58) are obvious generalizations of the variables of Eqs. (9.27) and 

(9.28). The new variable xl2 is given as follows 

2(Pl’ qXP2 - q) 
X 12 = Q’(P,. P,) 

and Z12 is obtained from xl2 by replacing Pi by pi. Furthermore T = Q 2 /s, where 

s = (P, + P,)2. 

In Eq. (9.56) Gbk stands for the photon-parton j cross-section with the parton 

k in the final state. The parton j belongs to the incoming hadron H and its 

distribution is given by $fjH(cl, Q2) with 5 1 being the momentum fraction of H 

carried by parton j. The parton k, on the other hand, fragments into the hadron h, 

and this process is described by the fragmentation function C,D# 2, 4’). The 

sums in Eq. (9.56) run over all types of partons i.e. quarks and gluons. Similar 
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jk comments apply to Eq. (9.58) with u P being the cross-section for parton j-parton k 

scattering or annihilation with a p+ p- pair in the final state. 

Formulae (9.56) and (9.58) are obtained by summing various QCD diagrams to 

all orders in g2. Keeping leading logarithms in each order corresponds to the 

leading order in g2(Q2). Summing next-to-leading logarithms corresponds to next- 

to-leading order in g2(Q2) and so on. As in deep-inelastic scattering and semi- 

inclusive e+e- annihilation, one encounters mass singularities which must be 

factored out and absorbed in the incalculable (in perturbation theory) wave 

functions of the incoming and outgoing hadrons: parton distributions and 

fragmentation functions or in more formal language space-like and time-like cut 

vertices. The structure of mass singularities (anomalous dimensions) turns out to 

be the same for incoming hadrons as in deep-inelastic scattering and for outgoing 

hadrons as in e+e- annihilation. Therefore the parton distributions and parton 

fragmentation functions be defined universally independent of the process 

considered. We write ,lcan,l because, due to ambiguities in the definition of parton 

distributions and parton fragmentation functions beyond the leading order of 

asymptotic freedom, one could in principle define parton distributions in a different 

way for different processes. This of course would not be a very useful thing to do. 

Let us discuss Eqs. (9.56) and (9.58) in slightly more detail. In the leading 

order of asymptotic freedom 

oP - jk(;;, 2, Q2) = djk e26(1 - Z)6(1 - 2) j (9.59) 

and 

j=q 

#fil’ G2’ q2, Q’i = 

$ej26(1 -Gl)S(l -2,)s L-GI -2,+X S; 
( x:2 12 for k=; 

. i3.60) 

0 otherwise 
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where l/3 is the color factor. Therefore, inserting Eqs. (9.59) and (9.60) into Eqs. 

(9.56) and (9.58) we obtain 

aHh(x, z, Q2) = f ef [xfF(x, Q’)] [,D:(z, a2)] (9.61) 

and 

UH~H~(X~, ~2’ Q2)= f 1 ef[xlfjH1(xl, Q~)] [x2fsH2 

j,? 
(x2,Q2+(1-&) (9.62) 

where j runs over all flavors,j denotes antiquarks and f r(x, Q2) (f r(x, Q2)) are just 

the quark (antiquark) distributions of Section V. fjH(x, Q2) and D$z, Q2) satisfy 

Eqs. (2.53-2.54) and (9.39), respectively. There is no explicit gluon contribution to 

the cross-sections 5 Hh and o H H to this order in i2(Q2). Gluons, however, 
1 2 

contribute indirectly in this order through the scaling violations in the quark 

distributions and quark fragmentation functions. The formulae (9.61) and (9.62) 

are, except for the Q2 dependence, exactly the same as in the simple parton model. 

Notice in particular the factorization between the x and z dependence for CHh and 

between the x1 and x2 dependence for aH H (except for the 6 function). 
1 2 

If next-to-leading order corrections are taken into account the Q2 depen- 

dence of parton distributions and parton fragmentation is modified, and there are 
-2 2 g (Q > corrections to the parton cross-sections of Eqs. (9.59) and (9.60). In addition 

there are explicit contributions involving gluons. For instance, there is an explicit 

contribution of quark-gluon scattering to the u-pair production and an explicit 

appearance of the gluon fragmentation function in the semi-inclusive deep-inelastic 

cross-sections. Furthermore the factorization property shown in Eqs. (9.61) and ,’ 

(9.62) is broken through the i2(Q2) corrections to the parton cross-sections. 

For explicit calculations of next-to-leading order corrections to u-pair 

production, we refer the reader to the interesting papers by (Altarelli, Ellis, 
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Martinelli, 1978, 1979a; Kubar-Andre and Paige, 1979; Harada, Kaneko and Sakai, 

1979; Contogouris and Kripfganz, 1979b; Abad and Humpert, 1979). As discussed 

in particular by (Altarelli et al., 1979a) and (Kubar-Andre and Paige, 1979) the 
-2 2 g (Q ) corrections to the q4 annihilation are very large. Unfortunately the authors 

of these two papers used in their calculations the leading order predictions for the 

QL evolution of the quark distributions whereas, consistently to this order, one 

should include the next-to-leading order corrections to the quark distributions in 

-2 2 addition to the g (Q ) corrections to the parton cross-sections. If the parton 

distributions are defined as in Eq. (2.136) the next-to-leading order corrections to 

their Q2 evolution are small. However, the definitions of quark distributions 

(beyond the leading order) in the two papers above differ from ours and it would be 

interesting to check how the author’s conclusions about the size of the g2(Q2) 

corrections are changed when the Q2 dependence of parton distributions is properly 

taken into account. 

In summary: -2 2 since the g (Q ) corrections to the elementary parton cross- 

sections depend on the definition of parton distribution (or fragmentation functions) 

beyond the leading order approximation, both g2(Q2) corrections to the parton 

cross-sections and to the parton distributions (fragmentation functions) must be 

consistently incl uded in a phenomenol ogical analysis. Only then can a physical 

answer independent of a particular definition of parton distributions (fragmentation 

functions) be obtained. 

The explicit calculations of i2(Q2> corrections to semi-inclusive deep- 

inelastic scattering have been done by (Sakai, 1979; Altarelli et al., 1979b; Baier and 

Fey, 1979) who find breakdown of factorization between z and x at the 10% to 20% level for 

intermediate z and x values and larger breakdown of factorization for higher z and x values. 

The comparisons of these predictions with the data are now in progress. Altarelli et al. 



-2 14a- FERMILAB-Pub-79 /17-THY 

(1979b) have also calculated g2(Q2) corrections to e+e-+ hl + h2 + anything which turn 

out to be large only at the kinematical boundaries. Furthermore the qq contribution 

(order 2(Q2)) to massive p-pair production has been calculated by Contogouris and 

Kripfganz, 1979a; Schellekens and Van Neerven, 1979). This contribution turns out to 

be small in presently accessible kinematic range of T . 
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G. Miscellaneous Remarks 

There are quite a few applications of perturbative QCD which we have not 

discussed in this review. These include jets, large pI processes, pl distributions in 

massive u-pair production etc. These topics have been nicely discussed for 

instance in the papers by Ellis, Gaillard and Ross, 1976; Sterman and Weinberg, 

1977; Farhi, 1977; Georgi and Machacek, 1977; Cutler and Sivers, 1977; Combridge, 

Kripfganz and Ranft, 1977; Floratos, 1978; Furmanski, 1978, 1979; Ellis, 1978b; 

Brodsky, 1978; Field, 1978, 1979; Llewellyn-Smith, 1978b; Sachrajda, 1978~; 

Dokshitser, Dyakonov and Troyan, 1978a; Berger, 1979; Hwa, 1978; Halzen, 1979; 

Veneziano, 1979; Politzer, 1979; Brown, 1979; De Rujula, Ellis, Floratos and 

Gaillard, 1978; Einhorn and Weeks, 1978; Fox and Wolfram, 1979; Keller and Walsh, 

1978; Shizuya and Tye, 1979; Fritzsch and Streng, 1978; Altarelli, 1978b; Furmanski 

and Pokorski, 1979a; Konishi, Ukawa and Veneziano, 1978; Contogouris, Gaskell and 

Papadopoulos, 1978) where the interested reader may find further references. 

The study of non-perturbative effects in the inclusive and semi-inclusive 

processes can be found in the papers by (Andrei and Gross, 1978; Appelquist and 
Shankar, 1978; Baulieu et al., 1978; Ellis, Gaillard and Zakrzewski, 1979; Carlitz 

and Lee, 1978; Shifman, Vainshtein and Zaharov, 1979). 
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X. SUMMARY 

In this review we have presented in detail asymptotic freedom predictions for 

inclusive deep-inelastic scattering. We have also briefly discussed the structure of 

QCD formulae for other inclusive and semi-inclusive processes such as massive 

u-pair production, semi-inclusive deep-inelastic scattering, e+e- annihilation, and 

yy scattering. We have presented confrontations of asymptotic freedom 

predictions with the deep-inelastic data, and we may conclude that asymptotic 

freedom survives these confrontations very well with the possible exception of the 

longitudinal structure function where the situation is still unclear. The disagree- 

ment between theoretical predictions and the data for FL might not be a problem 

for QCD, however, and could be due to our neglect of higher twist operators, non- 

perturbative effects, etc., which are present in QCD but are difficult to calculate. 

We have devoted a considerable part of this review to a discussion of higher 

order corrections, the study of which began only two years ago. We have seen that 

the structure of QCD formulae with higher order corrections taken into account is 

fairly complicated and involves many features not encountered in the leading order. 

These new features include: 

i) gauge and renormalization-prescription dependences of separate elements 

of the physical expressions; 

ii) well-defined dependence of the functional form of the explicit higher order 

corrections on the definition of g2(Q2) or, equivalently, on A; 

iii) freedom in the definition of parton distributions and parton fragmentation 

functions beyond the leading order approximation. 

These features have to be kept in mind when carrying out calculations to 

make sure that various parts of the higher order calculations are compatible with 
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each other. Only then can a physical result be obtained which is independent of 

gauge, renormalization scheme, particular definition of jj2(Q2), and particular 

definition of the parton distributions. 

Although the structure of higher order corrections to the Q2-dependence of 

parton distributions and fragmentation functions is fairly complicated, the 

formulae for inclusive and semi-inclusive processes expressed in terms of these 

effective Q2-dependent functions are simple and have intuitive interpretations 

similar to that of the standard parton model. 

We have seen that the higher order corrections are quite large and, moreover, 

that there are some indications for their presence in the deep-inelastic scattering 

data. This is most clearly seen in the n-dependence of the parameter A extracted 

from the data on the basis of the leading order formulae. This n-dependence agrees 

well with that obtained from higher order calculations. 

We think it is important to calculate higher order QCD corrections for other 

than deep-inelastic processes. This has been already done for massive u-pair 

production, photon-photon scattering and e+e- annihilation. In the near future 

results for the higher order corrections to fragmentation functions and large pI 

processes should be available. At this point we would like to re-emphasize that 

without the higher order calculations a meaningful detailed comparison of QCD 

effects in various processes cannot be made. This again shows the importance of 

the calculations in question. 

Besides higher order corrections there are other effects which deserve 

further study. These are target mass effects, heavy quark mass effects, higher 

twist operator effects and non-perturbative effects. 
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In spite of the fact that there is still much to be done, both theoretically and 

phenomenologicall y, we believe that a lot of progress has been made in the past 

few years in the calculations of QCD predictions and in their confrontation with 

newer and more statistically significant data. 
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Appendix A: Basic Formulae of the Dimensional Regularization 

a) D-dimensional integrals 

dDk 
I----- 

1 ( l)N r(N-;) 

(2T)D (k2 _ M2 + ic)N 
“($72 r(N) 

1 
D 

(M2 _ ic)N - ’ 

dDk 
f- 

k2 i (-l)N-1 r(N - 1 - $1 D 

(2 dD (k2 - M2 + ic) 
N = 2 (z r(N) 

(M2 - is) 
N-l-; 

dDk 
s- 

kc( kv i ( l)N-1 I’(N - 1 - ;I gull 

(21dD (k2-M2+ic) 
N =q&pn r(N) 

(M2 - ic) 
N-l-; 

I L!%- k k 
(21TjD p v 

f(k2) = h guy .f - dDk k2f(k2) 
(2dD 

(A.11 

(A-2) 

(A.31 

(A.41 

where f(k2) is a function of k2 and M2 is a parameter. Integrals with odd number of 

k’s in the numerator are zero. 

b) Expansions of Euler-Gamma and Euler-Beta Functions 

r(N- 2”) = l’(N)(l-5$(N)) +Ok2) (A.51 

where 

4’(N) = SN 1 - yE (A.6) 

and 
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Here E = 4 - D and yE = 0.5772... Since 

I’(1 + A) r(A) = A 

and 

B(A1’ A2) = 
r (Al) lX42) 
r(A 1 + A2) 

we have for instance 

(A.8) 

(A-9) 

(A.lO) 

(A.1 1) 

l-$s~-l-$+ &-$+I. 3 
+ O(E2) l (A.12) 

c) Feynman Parametrization 

1 rb+ 8) sldx x a-1(1 - x)@ -1 

-=-iTEmm o 
. 

aClbB [ ax + b(l - x) ]a’B 
(A.13) 

Generalization of (A.13) to more factors can be found in (‘t Hooft and Veltman, 

1972). 
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d) Dirac Algebra in D dimensions 
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gllv= D 

YPYl-l = D-f 

Tr(ypyv) = 4g,,. 

y’fiy’= (2-D)$ 

YQlp2 YN = 4~1 p2 + (D - 4)hlb2 Y 

Y ’ fil$2fi3 Y ’ = -2fi34Sl - (D - 4)hl&4 
l 

(A.14) 

(A.15) 

(~.16) 

(A. 17) 

(~.18) 

(A.19) 

(A.20) 
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Appendix B: Parton Distributions and Matrix Elements 
of Local Operators. Charge Factors 

h the course of our review we have denoted the matrix elements of any non- 

NS singlet operator by A, . ANS n depends in fact on the process and the structure 

function considered. This dependence can be read from the parton model formulae 

of Section II. We give now a few examples. If AN(x) is defined by 

(0.1) 

then 

AN’(x) = .I 
A epbd for Fep 2 

AeN 

V(x) 7 AeN 

for 

for 

FeN - 
2 ~Fzy’uIN~ 

(8.2) 
F$ CC 

VW for 

where AeN and Aep(x) are defined in Eqs. (2.22) and (2.23) respectively. 

(k) Next we give examples of the charge factors Ai which appeared in our’ 

(k) formulae. For the non-singlet charge factors, 6 NS we have: 

for FP, FzN 

&k) 
NS = 

for 
- (B-3) 

for ,F;svt NC 
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(k) For the singlet charge factors, “J, , we have: 

for 
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Fep FeN 
2’ 2 

for FiSV CC . -1 (8.4) 

for F;‘” NC -1 

The formulae above are for the case of four flavors but it is a simple matter to 

generalize them to any number of flavors. 

The relations between A’,CQg) and part& distributions are given in Eqs. 

(5.29) and (5.30). Combining these equations with Table ?I and the expectation 

Az(Q$ > Az(QE) for n 24 we observe that AJQE) >> AA for n 14. 
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FOOTNOTES 

F1 The fact that QCD is ‘&ymptotically free was first presented (but not pubJished1 

by ‘t Hooft at the 1972 Marseille Conference on Yang-Mills Fields. . 

F2 See also Novikov et al. (1977). 

F3 See also Zaharov (19761, Novikov et al. (1978) and Field (1979). 

F4 In this review we restrict our discussions to spin-averaged processes. Asymptotic 

freedom effects in deep-inelastic scattering on polarized targets have been 

discussed by (Ahmed and Ross, 19754 1976; Altareili and Parisi, 1977; Kodaira, 

Matsuda, Muta, Sasaki and Uematsu, 1978). 

F5 Early discussions of QCD prior to the discovery of asymptotic freedom can be found 

in particular in the papers by Nambu (19661, Fritxsch and Cell-Mann (19711, 

Bardcen, Pritzsch and Cdl-Mann (19721, Fritzsch and Gell-Mann (1972& Fritzsch, 

Cdl-Mann, and Leutwyler (1973) and Weinberg (1973a, b). 

F6 We neglect mass effects for the moment. 

F7 This intuitive approach applies to all renormalizable field theories (Polyakov, 

1971; Kogut and Susskind, 1974). 

F% Twist P dimension - spin. Here we neglect contributions of higher twist 

operators whose coefficient functions are suppressed relative to the twist 2 

operators by powers of Q2. 

F9 For k = 1 and 3 the power n - 2 on the f.h.s. of Eq. (2.69) should be replaced by 

n-l. Dependent on the structure function and process considered, Eq. (2.694 and 

the following equations in this section .apply either for cvcn’or odd v&es of n. 

The situation is summarized in Eq. (2.124) and explained in Section VlLE.3. In 

order to obtain predictions for all moments of n (odd and evm) analytic 
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continuation in n has to be made. This is trivial in the leading order but non- 

. trivial in the next-to-leading order (see F33). 

i Fl%he arbitrariness of Qz in Eq. (2.69a) is however restricted to sufficiently large 

i values of Qz for which perturbative calculations can be trusted . 

j 
F1 lbjumerical values of higher order corrections to Fzp considered in this paper are 

wrong and should be ignored. 

I F12The results of these two papers have been recently confirmed by Altarelli, Ellis 

and Martinelli (19791, and Harada, Kaneko and Sakai (1979). 

I F1%hese calculations ha ve been done in the minimal subtraction scheme of ‘t Hooft 

(1973) and are the only existing caldations which can be combined with the 

two-loop anomalous dimensions calculated by (Floratos, Ross and Sachrajda, 

1977, 1979). See discussions below. 

F141he first calculations of QCD corrections to the sum rules (2.41) and Q-43) have L 

I been done by Caivo (1977). There are however discrepancies between his results 
\- 

and results presented here. -_ 

PlS 
i As discussed in Section VILE the structure function F3 does not depend on @on 

contributions and Eq. (2.90) is therefore the full result. 
--. 

F16As discussed in Section VIII care must be taken when continuing Eq. (2.lOlb) to 

-integer values of n. 

F17Except for k = L. Also corrections to various sum ruies are, in.this order in g2, 

automatically renormalization prescription independent. 

‘%his cancellation 0 f renormalization prescription dependence is a particular 

example of a general theorem of (Stueckdberg &d Peterman, 1953). . . 
3 
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F19 The results of these calculations should not be combined with the results for 

(l),n 
yNS -’ and yi;’ ? of (Floratos, Ross and Sachrajda, 1977, 1979). 

F20Th e numerical values for higher order parameters in Tables I and II correspond to 

so-called MS scheme for the effective coupling constant (see Section VII). In this 

scheme the terms (In HIT - y E) in Eqs. (2.96) and (2.120) are dropped. 

F21 For further discussions of mass effects and heavy quark contributions to deep- 

inelastic scattering we refer the reader to the papers by Witten (1976) and Close, 

Scott and Sivers (1976). 

F22 For a review see (Leibrandt, 1974) and references therein. Basic formulae of 

dimensional regularization are collected in Appendix A. Useful calculations can be 

found in the paper by Marciano, 1975. 

F23p . rior to the discovery of asymptotic freedom it has been argued that 

approximate Bjorken scaling requires an asymptotically free theory (Callan and 

Gross, 1973) and it has been shown that only non-Abelian gauge theories can be 

asymptotically free (Coleman and Gross, 1973). One exception 

theory with X < 0 (Symanzik, 1973), but this theory is rejected on 

its spectrum is unbounded from below. 

to this is a Xo 4 

the ground that 

F24 Anomalous dimensions of local operators considered in this review are gauge 

independent in order g2. 

F25 Notice that we work with a transposed matrix. 

F26Since FL vanishes in the leading order we discuss here only F2 i.e. k = 2. FL is 

discussed in Sections VII and VIII. 

F27 Phenomenological studies of scaling violations without reference to asymptotic 

freedom can be found in the papers by (Karliner and Sullivan, 1978; Perkins, 

Schreiner and Scott, 1977 and Kirk, 1978). 
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F2% or an excellent review of the deep-inelastic muon data we refer the reader to 

the paper by (Francis and Kirk, 1979). 

F29 For recent calculations of asymptotic freedom and W boson propagator effects at 

very high energies (1 - 100 TeV) see the papers by HaIprin and Oakes (1979) and 

Oakes and Tung (1978). 

F3% should be emp hasized that the predictions of scalar theories as presented here 

are based on an unproven assumption that perturbative calculations are reliable 

for these theories. See discussion in Section V1.C. 

F31See also Abbott (1979). 

F32 Generalization of this proof to all orders in g2(Q2) has been discussed by Moshe 

(1978) and Schellekens (1979). For a very nice discussion of this topic see 

Peterman (1979). 

F33 W,n It turns out that yNs = y”, + (-l)nyE where y”, and y”, may be analytically 

continued in n. Because of the factor (-1)” the even and odd values of yNs (lh (see 

F9) must be (in the process of inversion) analytically continued to u”, + y: and 

Y; - yt respectively. The fact that y: f 0 can be related to flavor symmetry 

breaking in antiquark distributions (Ross and Sachrajda, 1979). 

F34 We recall that we have calculated the diagrams of Fig. 8 in Section III in order to 

find yl,($, the coefficient of In -p2/u2 in Eq. (7.29). This time we are interested 

(2),NS in the constant pieces An . 

F35The parameters ENS k n correspond to the MS scheme of Eq. (7.58) and are obtained 9 
from Eq. (7.42) by dropping there (In 41t - yE) terms. Notice that the n 

dependence of An (k) is independent of the definition of g2(Q2). 
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F36Similar conclusions have been reached by Anderson et al. (1979). 

F37 The material of subsections VII1.B and VII1.D has been done in a collaboration 

with W.A. Bardeen. 

F38For n = 2, 4, 6, 8 and 10 the position of the singularity is at f = 5.583, 3.788, 

1.627, 0.142 and -0.988 respectively. The corresponding residue in R; tn 
are equal 

to -15.43, 1.36, 0.2, 0.007 and -0.02. 

F39 Notice that the diagrams of Fig. 10b enter also the calculation of yg in which 

case one is interested only in the coefficient of In -p2/p2 (see Eq. 8.52). This 
(2) $J time we are interested in the constant pieces AnG . 

F40 See Appendix B. 

F41 While completing this review we received a paper by (Anderson et al., 1979) where 

a comparison of higher order corrections with the measured moments of F;P and 

Fid has been done. The agreement with the data is good with the value of bMS = 

0.459 + 0.111. This is consistent with the value obtained from the analysis of 

non-singlet structure functions (Eq. 7.59). 

F42See Nanopoul os and Ross (1975). For a recent analysis see (Abbott, Atwood and 
Barnett, 197!?1. 

F43 Strictly speaking the diagrams of Fig. 36 represent the contribution of the 

photon-quark scattering to the photon-proton cross-section. In order to calculate 

the full photon-proton cross-section also the contribution of the photon gluon 

scattering has to be considered (see Section VIII). 

F44See also Keller, Walsh and Zerwas (1978) and Kajantie (1979). Gunion and Jones (1979) 

F45 
have discussed the parameter nn in the intuitive approach. 

See for instance Ellis, Georgi, Machacek, Politzer and Ross (1979) except that we 

denote differential cross-sections as do/dx by o(x), do/(dxdz) by o(x, z) etc. For 

simplicity and following these authors we consider only the cross-sections which 

are projected out by contracting the indices of the virtual photon with the tensor 
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F46p revious studies of the fragmentation functions in the context of QCD can be 

found in Callan and Goldberger (1975) and Mueller (1974). Semi-inclusive deep- 

inelastic scattering has been discussed previously by many authors, in particular 

by Georgi and Politzer (1978 a) and by Mendez (1978). 

F47Some of the order g2 corrections to e+e- + h(P) + anything are shown in Fig. 44. 

F481n th’ IS example we do not discuss the g2 corrections which arise from gluon 

production and its subsequent decay into hadrons. 
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n d” NS d” RNS 24 R2,n R;,n R3,n 

2 0.395 0.000 0.617 1.951 -4.344 3.726 -0.271 

4 0.775 0.760 1.638 7.956 9.078 17.07 6.756 

6 1.000 0.996 2.203 13.19 12.81 30.43 12.36 

8 1.162 1.160 2.587 17.64 17.53 41.72 17.01 

10 1.289 1.287 2.882 21.50 21.44 51.41 20.99 

2 0.427 0.000 0.747 2.098 -8.117 4.799 -0.124 

4 0.837 0.817 1.852 8.117 0.811 18.17 6.917 

6 1.080 1.074 2.460 13.34 12.99 31.63 12.52 

8 1.255 1.252 2.875 17.78 17.65 43.01 17.15 

10 1.392 1.390 3.192 21.63 21.57 52.78 21.12 

-NS Table 1. Numerical values of the parameters dbs, d; R 2 n, 7 Ri n 9 
and R3?” for f = 3 and f = 4. The table is from (Bardeen and Buras, 1979b). 
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n 2 

a n 0.429 

a n 0.429 

E 

Z:+ 

0.571 

2.35 

Z” 0.00 

Z”NS 1.65 

K$ 

K;- 

0.00 

Ki+ 

5.90 

Kd- 

0.00 

-+ -4.42 

4 6 8 10 

0.980 0.996 0.998 0.999 

0.170 0.091 0.061 0.045 

0.113 0.048 0.029 0.020 

- 2.14 - 3.02 - 3.42 - 3.62 

1.95 2.17 2.27 2.35 

2.05 2.16 2.25 2.33 

2.79 7.49 11.4 14.7 

6.87 0.221 0.070 0.034 

- 0.056 - 0.033 - 0.020 - 0.013 

-343.0 -49.9 -39.9 -37.0 

Table 2. Numerical values of the parameters which enter the formulae for the 
Q2 evolution of parton distributions (Eqs. (2.85), (2.86), (2.137-2.144) for 

f = 4 and MS scheme. 



n 3 4 3 4 

2 77.70 71.37 65.84 55.56 

4 133.25 120.14 132.6 119.28 

6 164.26 147.00 164.1 146.82 

8 186.68 166.39 186.6 166.34 

10 204.5 181.78 204.4 181.74 

12 219.3 194.63 219.3 194.58 

14 232.1 205.7 232.1 205.7 

16 243.3 215.4 243.3 215.4 

18 253.3 224.1 253.3 224.1 

20 262.3 231 .v 262.3 231 .Y 

( 1 ),Il 
yJJ9 

(l),n 
hJc 

3 4 

-45.25 -60.34 

7.75 10.34 

16.56 22.08 

19.47 25.96 

20.44 27.25 

20.63 27.51 

20.46 27.29 

20.11 26.82 

19.68 26.25 

19.22 25.63 

3 4 

-65.84 -55.56 

-28.64 -27.40 

-18.46 -18.28 

-13.94 -14.08 

-11.40 -11.67 

- 9.78 -10.11 

- 8.65 - 9.00 

- 7.81 - 8.17 

- 7.16 - 7.52 

- 6.64 - 7.00 

3 4 

45.25 60.34 

178.9 151.61 

242.9 201.94 

287.6 238.16 

323.1 267.48 

353.1 292.44 

379.0 314.2 

402.1 333.7 $ 
I 

422.8 351.2 

441.6 367.3 

ts! 
Table 3. Coefficients of g4/(l 6 a21 in the anomalous dimensions yf$isn, ~4~’ (l) 7 y ‘2” 

, ydl),n (lb and Y GG II, 4J 

as given in ‘t Hooft’s scheme for f = 3 and f = 4. This Table has been calculated on the basis of the 

results of (Floratos, Ross and Sachrajda, 1977, 1979). 
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n Scheme 

MS 

MOM 

MS 

Q2 [ GeV2 ’ 

5 10 

0.97 0.96 

0.68 0.73 

1.20 1.15 

J 

50 

0.95 

0.80 

1.09 

200 

0.95 

0.83 

1.07 

MS 1.10 1.05 0.99 0.97 

MOM 0.63 0.65 0.71 0.75 

MS 1.53 1.42 1.26 1.20 

MS 1.24 1.15 1.05 1.01 

MOM 0.69 0.68 0.71 0.74 

MS 1.79 1.62 1.40 1.30 

MS 1.37 1.25 1.11 1.06 

8 MOM 0.79 0.74 0.73 0.75 

MS 2.00 1.79 1.52 1.39 

Table 4. The values of the quantity 1 + 
R;~,(Q~) 

B, In 2 
as a function of n and 

A2 Q2 in various schemes: MS (R = 0.5 GeV) , MOM (hmom = 0.85 GeV) and 

MS (A = 0.4 GeV). 
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n 3 4 

2 0.660 1.245 

4 0.276 0.504 

6 0.175 0.317 

8 0.127 0.230 

10 0.0989 0.179 

12 0.0806 0.146 

14 0.0678 0.122 

16 0.0584 0.105 

18 0.0511 0.0919 

20 0.0453 0.0815 

a n 

0.353 

0.218 

0.138 

0.100 

0.0781 

0.0637 

0.0536 

0.0461 

0.0404 

0.0358 

2 n 

4 

0.529 

0.373 -0.604 -1.028 

0.235 -0.418 -0.716 

0.170 -0.327 -0.561 

0.132 -0.269 -0.463 

0.108 -0.228 -0.394 

0.0904 -0.198 -0.343 

0.0777 -0.175 -0.303 

0.0680 -0.157 -0.271 

0.0603 -0.142 -0.245 

3 4 3 4 

0.889 1.679 

0.489 0.924 

0.349 0.660 

0.274 0.518 

0.226 0.427 

0.193 0.364 

0.168 0.318 

0.149 0.282 

0.134 0.253 

0.122 0.230 

Table 5. Numerical values of the parameters an, a, ana F,, which enter Eq. (9.25) 

5-l pn 

for f = 3 and 4. p, are the moments of the p(x) which enter Eq. (9.14). The Table 
is from (Bardeen and Buras, 1979a). 



-249- FERMILAB-Pub-79/17-THY 

Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

Fig. 9: 

Fig. 10: 

Fig. 11: 

Fig. 12: 

Fig. 13: 

FIGURE CAPTIONS 

Deep-inelastic lepton-hadron scattering. 

Deep-inelastic scattering in the parton model. 

a) vector boson - parton scattering 

b) corresponding virtual Compton amplitude 

The indices p and v are the current indices as in Eq. (2.1). 

Basic processes in the intuitive approach. 

Feynman rules for Quantum Chromodynamics. 

g2 and go order contributions to quark self-energy. 

Lowest order corrections to gluon self-energy. 

Lowest order corrections to (a) triple gluon vertex and 

(b) fermion-gluon vertex. 

Diagrams entering the calculation of y 
lil;” 

O,* 
Or YNS l 

Feynman rules for the operator insertions. 

Formal approach versus intuitive approach. 

Fzp as a function of x for (a) Q2 = 1.8 GeV2 and (b) Q2 = 22.5 

GeV2 together with contributions from uv, dv, non-charmed 

sea and charmed sea (Buras and Gaemers, 1978). 

The Q2 behavior of Fzp for various values of x, compared with 

the SLAC data of (Riordan et al., 1975). The solid line 

corresponds to parametrizations of Eqs. 5.46, 5.51, 5.52, 5.53. 

The sea contribution is negligible at these values of x. 

Comparison of asymptotic freedom predictions with the p p 

data of Gordon et al. (1979) (open circles). For compari- 

son also the ep data of Riordan et al. (1975) (triangles) are shown. 

The curves correspond to the parametrizations of Figs. 12 and 

15 with A = 0.4 GeV. 
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Fig. 14: 

Fig. 15: 

Fig. 16: 

Fig. 17: 

Fig. 18: 

Fig. 19: 

Fig. 20: 

Comparison of the QCD predictions for the moments of F2 

with the ep, ed, u p and pd data (Anderson, Matis and 

Myrianthopoulos, 1978). 

The absolute cross-sections a’ /E and crv/E as functions of 

energy, compared with the high energy data. The calculated 

curves are for the free parton model (FPM) and the leading 

order of asymptotic freedom (ASF). The parametrizations of 

the valence quarks are as in Fig. 12. The input parametri- 

zations for the remaining distributions are: 

xS(x, Q;) = 0.99(1 - x18, xC(x, Q;) = 0 and xG(x, Q;) = 

2.41(1 - xJ5 at Qz = 1.8 GeV2. The increase of the cross-sections 

in the parton model is due to charm production. 

The ratio o’/ov as a function of energy, compared with the 

high energy data. The curves correspond to the parametri- 

zations of Fig. 15. 

<Y>~ and <yk as functions of energy. The curves correspond 

to asymptotic freedom parametrizations used in Fig. 15. 

<Q2/E> as functions of energy. The curves correspond to 

asymptotic freedom parametrizations used in Fig. 15. The 

collection of data points is from Tittel (1979). 
1 1 

Integrals I F (x)dx and I dx xF3(x) as functions of energy. 
0 2 0 

The curves have been obtained on the basis of Eqs. (6.3) and 

(6.4) with the values of ov and d as in Fig. 15. 

x 
F3 

and x 
F2 

as functions of energy. The curves correspond to 

an asymptotic freedom fit with A = 0.47 GeV. The figure is 

from (de Groot et al., 1979a). 
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Fig. 21: 

Fig. 22: 

Fig. 23: 

Fig. 24: 

Fig. 25: 

Fig. 26: 

Fig. 27: 

Fig. 28: 

Fig. 29: 

Fig. 30: 

F2(x, Q’) as measured by the CDHS group (de Groot et al., 

1979a) (black points) compared with the leading order asymp- 

totic freedom predictions for A = 0.47 GeV. The open points 

are from SLAC. The figure is from (de Groot et al., 1979a). 

log Mi versus log Mj plots as obtained by CDHS and 

BEBC/GGM. The figure is from (de Groot et al., 1979a). 

The measured slopes as defined by the plots of Fig. 22. The 

straight horizontal lines are the predictions of vector gluon 

and scalar gluon theories. 

(lb Examples of diagrams which enter the calculation of y NS . 

Examples of g4 order contributions to quark self energy. 

Diagrams entering the calculation of Tk n (2)9NS of Eq. (7.31). 
? 

Order g2 deviations from the Gross-Llewellyn-Smith and 

Bjorken sum rules. The dashed lines (---I are parton model 

predictions. The solid ( -1 lines follow from Eqs. (2.99) and 

(2.100). The f’ igure is from (Bardeen et al., 1978). 

Nachtmann moments of xF3(x, Q2) 5. Q2. The data are from 

(Bossetti et al., 1978). The solid lines represent the MS and MS 

schemes. 

Experimental An values obtained by Duke and Roberts (1979) 

using the data of BEBC (open box), CDHS (open diamond) and 

the entire SLAC data. 

The effective AF)(Q2) (-) as defined by Eqs. (7.68) and (7.69) 

as functions of n for various values of Q2 and x= 0.5 GeV. For 

(2) comparison the An as defined by Eq. (7.63) is plotted as 

functions of n for K= 0.35 GeV. 
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Fig. 31: 

Fig. 32: 

Fig. 33: 

Fig. 34: Diagrams entering the calculation of Tk n (2)yG of Eq. (8.55). Y 
Fig. 35: Size of the explicit second order corrections Ii 2,n(z) in the MS 

Fig. 36: 

Fig. 37: 

Fig. 38: 

Fig.39: 

The effective coupling constants Z(Q2) as extracted from the 

BEBC data for the leading order (L.O.), MS scheme, m scheme 

and momentum subtraction scheme MOM. 

Examples of the diagrams which enter the calculation of the 

two-loop anomalous dimension matrix y 

y tJ,“(e, f) and y$,“(g, h). 

($“(a, b), y$,*(c, d), 

Examples of the diagrams which enter the calculation of the 

anomalous dimension of the gluon field in order g4. 

scheme for f = 4. 

Diagrams contributing to photon(w )-quark(+) scattering 

to order g2. The empty (“bare,,) blob stands for the “bare,, (Q2 

independent) quark distribution in the proton. m denotes 

gi uon. 

The ratio R as given by Eq. (9.9) as a function of $-2- Q for two 

values of A. The heavy lepton contribution (AR = 1) has been 

added. The parton model prediction is R = 4.3. 

The process e+e- -c hadron + e+e-: 

a) The dominant two-photon contribution 

b) Vector dominance contribution to the photon-photon scat- 

tering 

c) Contributions to photon-photon scattering in which the 

photon behaves like a point-like particle (parton model 

diagram). 

Typical diagrams contributing to the mixing between hadronic 

operators and the photon operator a) K ‘,n ,,, b) K(d),” c) Kt),*, 
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Fig. 40: 

Fig. 41: Illustration of the r.h.s. of Eq. (9.29). The sum runs over 

quarks and gluons. 

Fig. 42: Illustration of the r.h.s. of Eq. (9.36). The sum runs over 

Fig. 43: 

Fig. 44: 

Fig. 45: 

Fig. 46: 

Moments of the photon structure function in units of c1 2 as 

predicted by the parton model (a), asymptotic freedom in the 

leading order (b), and asymptotic freedom with higher order 

corrections (c, d, e). For comparison the same value of A for 

all cases has been chosen. 

quarks and gluons. 

Basic processes responsible for the Q2 evolution of the frag- 

mentation functions. 

Diagrams contributing to quark (b-1 production in 

e+e- + h + anything to order g2. The empty (“bare”) blob 

stands for the “bare” Q2 independent quark fragmentation 

functions. LUW denotes gluons. 

Illustration of the r.h.s. of Eq. (9.56). The sums run over 

quarks and gluons. 

Illustration of the r.h.s. of Eq. (9.57). The sums run over 

quarks and gluons. 
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